
Interpretable Domain Randomization for
Reinforcement Learning with Disentangled

Representations
Moritz Schneider, B.Sc. RWTH

The present work was submitted to the Chair of Information Management in
Mechanical Engineering at the Faculty of Mechanical Engineering of RWTH
Aachen University.

presented by Moritz Schneider

Student ID no.: 345827

1st Examiner: Prof. Dr. phil. Ingrid Isenhardt

Supervisor: Vladimir Samsonov, M.Sc.

Aachen, 5. Oktober 2021

Moritz Schneider:
Interpretable Domain Randomization for Reinforcement Learning with Disentangled Repre-
sentations, © 5. Oktober 2021

C O N T E N T S

1 introduction 1
2 theoretical background 3

2.1 Fundamentals of Information Theory . 3
2.1.1 Information Bottleneck Method . 5

2.2 Reinforcement Learning . 5
2.2.1 Markov Decision Processes . 6
2.2.2 Value Functions . 7
2.2.3 Policies . 9
2.2.4 Q-Learning . 10
2.2.5 Policy Gradient Methods . 12
2.2.6 Maximum Entropy Reinforcement Learning 13

2.3 Simulation to Reality Transfer (Sim-to-Real) 15
2.3.1 Challenges of Real-World Reinforcement Learning 16
2.3.2 Domain Adaptation . 17
2.3.3 Domain Randomization . 17

2.4 Representation Learning . 19
2.4.1 Autoencoders . 19
2.4.2 Variational Autoencoders . 20
2.4.3 Disentangled Representations . 22

3 related work 27
3.1 Vision-Based Reinforcement Learning . 27
3.2 Vision-Based Robot Learning . 28
3.3 Sim-to-Real & Domain Randomization . 29

3.3.1 Domain Randomization . 29
3.4 Disentangled Representations for Reinforcement Learning 32

4 disentangling visual reinforcement learning with domain

randomization 34
4.1 Problem Formulation . 34
4.2 Guiding Domain Randomization with Weak-Supervision 35
4.3 Capacity-based Domain Randomization . 37
4.4 Capacity-based Weakly-Supervised Domain Randomization 38

5 experimental results 40
5.1 Experimental Setup . 40

5.1.1 Environment . 40
5.1.2 Training Setup & Hyperparameters 41

5.2 Source Domain Evaluation . 44
5.2.1 Encoding Performance . 46

5.3 Simulation-to-Simulation Experiments . 48

iii

contents iv

5.4 Latent State Interpretability . 49
5.4.1 Latent Traversals . 50
5.4.2 Embeddings of Encodings . 54
5.4.3 Attribution . 57

6 conclusion & outlook 59
6.1 Future Investigations & Ideas . 60

bibliography 62
a appendix 72

a.1 Latent Traversal . 72
a.2 PCA . 73
a.3 Attribution . 74

a.3.1 Saliency . 74
a.3.2 GradCam . 75

L I S T O F F I G U R E S

Figure 2.1 The closed-loop interaction in a MDP. 6
Figure 2.2 The closed-loop interaction with an Actor-Critic architecture. . . . 13
Figure 2.3 The general structure of an AE. 19
Figure 2.4 The general structure of a VAE. 22
Figure 2.5 Types of weak supervision. 25
Figure 4.1 Combining weakly-supervised disentanglement with DR for RL. . . 38
Figure 5.1 Visualization of the original environment (left hand side) and com-

parison of different randomizations (right hand side). 41
Figure 5.2 Source Domain Evaluation. 44
Figure 5.3 ACCI Evaluation for different γ values. 46
Figure 5.4 ACCI Evaluation for different parameter settings. 47
Figure 5.5 Visualization of the original environment in MuJoCo (left) and the

corresponding environment in PyBullet (right). 48
Figure 5.6 Simulation to Simulation Evaluation. 48
Figure 5.7 Experiments to measure interpretability of the generative model. . 50
Figure 5.8 Latent traversals of SAC-ACCI with γ = 100. 51
Figure 5.9 Latent traversals of SAC-ACCI with γ = 500. 51
Figure 5.10 Latent traversals of latent variable z51 of SAC-ACCI with γ = 500

for different input images. 52
Figure 5.11 Latent traversals of the entangled SAC-VAE with β = 1. 53
Figure 5.12 Latent traversal of SAC-DARLA with β = 4. 53
Figure 5.13 Visualization of principal components 1 and 5 of a PCA of the

representation of an SAC-ACCI agent. 55
Figure 5.14 Visualization of the relationship between all 7 principal components

of the representation of an SAC-ACCI agent. 56
Figure 5.15 Saliency maps and Grad-Cam images for different latent dimensions

of the main SAC-ACCI agent. 57

L I S T O F TA B L E S

Table 5.1 Parameters for DR in the MuJoCo simulation environment. 42
Table 5.2 Trained Agents. 43
Table 5.3 A complete overview of used hyperparameters. 45

v

Table 5.4 A complete overview of used hyperparameters for the ACCI algorithm. 45

A C R O N Y M S

ACCI Automatic Controlled Capacity Increase

Ada-GVAE Adaptive Group-based Variational Autoencoder

ADR Automatic Domain Randomization

AE autoencoder

AI artificial intelligence

CNN convolutional neural network

COBRA Curious Object-Based seaRch Agent

CPSU cart-pole swing-up

DA domain adaptation

DARLA DisentAngled Representation Learning Agent

DNN deep neural network

DR domain randomization

ELBO evidence lower bound

FoV factors of variation

i.i.d. independently and identically distributed

GVAE Group-based Variational Autoencoder

KL Kullback-Leibler

MDP Markov decision process

MC Monte Carlo

MLP multilayer perceptron

MSBE Mean Squared Bellman Error

MSE mean squared error

OOD out-of-distribution

PCA principal component analysis

RL (deep) reinforcement learning

SAC Soft Actor-Critic

vi

acronyms vii

SGD stochastic gradient descent

TD temporal-difference

VAE variational autoencoder

VI variational inference

w.r.t. with respect to

1
I N T R O D U C T I O N

Robots will neither be common nor
very good in 2014, but they will be in
existence.

Asimov [Asi64]

This quote from Isaac Asimov from the year 1964 predicted the state of robotics in 2014
quite accurate. Around 2013, Mnih et al. [Mni+13] showed impressive results combining
reinforcement learning and deep learning that lead to a milestone in today’s view of
artificial intelligence (AI). This progress also entered the field of robotics, which increased
the overall interest in the subfield of robot learning. The field of (deep) reinforcement
learning (RL) enables robotic agents to learn complex skills in the real world purely by using
images. On the other hand, RL algorithms require learning from experience that the robot
autonomously collects itself and the learned control policy is usually not transparent. If the
data collection is done in the real-world, the behavior of the robot might be unstable during
the collection process. Therefore, collecting experience is often outsourced to simulations.
However, since simulations make certain assumptions, data collected in them will always
differ from the real world. Due to this distribution shift in the data, robot learning
algorithms often fail to transfer to different domains like the real world. By randomizing
various aspects of the simulation during training it is possible to increase the agent’s
generalization capabilities. A method which is referred to as domain randomization (DR).
Problematically, the method is not well theoretically founded. While the technique is fairly
intuitive, it does not explain what representation of the randomized simulation the robot
has learned in the end. Moreover, it is difficult to interpret why the robot fails anyway. On
the other hand, numerous methods exist to learn representations that are more transparent.
I.e. disentangled representation learning is able to learn structured representations from
high-dimensional inputs. They shall capture the underlying factors of variation (FoV) of the
given scene in distinct independent dimensions. A property that makes them interpretable
as the factors explain the data. DR and disentangled representations both rely on the
generative factors of the task. Hence there is a strong theoretical relationship between the
two methods. This relationship has been rarely considered until now and is investigated
in this thesis. The assumption this thesis relies on is, that combining both methods
should produce better and more interpretable representations. This might ensure that the
representation is capable of capturing the important factors of the task allowing a robot

1

introduction 2

to transfer to the real world more reliably. If the agent fails to transfer to the real world
the interpretation of the corresponding disentangled representation could indicate which
factors led to the failure.

Furthermore, this thesis examines the question, if learned disentangled representations
can be combined with DR to assist the perception of RL agents. Previous work on
disentangled representation learning and RL separates the overall learning process into
individual substeps for both learning kinds [Hig+17b; Wul+20; Trä+21]. On the other
hand, work on vision-based and data efficient reinforcement learning demonstrates that
learning a meaningful representation jointly with a reinforcement learning policy helps to
learn the control task [Yar+21; LSA20]. Instead of training agents on a static range of
environment factors, Akkaya et al. [Akk+19] shows that it is beneficial to train agents on
a DR curriculum.

The major contribution of this thesis is a framework which combines these findings. To
this end, this framework must incorporate specific steps: A vision module learns to produce
disentangled representations using DR. At the same time those representations should
be used to train a RL agent and to guide the DR sampling process so that the interplay
between disentangled representation learning and DR creates a curriculum.

To built and explain such framework, the thesis is structured into several parts. In
the first chapter the fundamentals of information theory, reinforcement learning, domain
randomization and unsupervised representation learning are introduced. Subsequently,
related publications on vision-based RL, robot learning and DR are reviewed. In particular,
work that already combines reinforcement learning and disentangled representation learning
is considered in Chapter 3. Based on these foundations, the problem statement for a
curriculum-based DR algorithm with an emphasize on disentangled representation learning
is presented in Chapter 4 and a theoretical framework that solves this problem is developed.
In Chapter 5 an actual implementation of the framework is evaluated on a particular
benchmark task against other baseline algorithms. Furthermore, different parameter settings
are compared and an investigation on the interpretability of the learned representation is
conducted. The approach is concluded in Chapter 6 as well as future work is discussed.

2
T H E O R E T I C A L B A C K G R O U N D

This chapter describes the theoretical foundations that this thesis builds upon. The first
of the four parts depicts the fundamentals of information theory since the methods of
this thesis make use of those concepts. To be able to solve aforementioned problem as
a (deep) reinforcement learning (RL) problem, the necessary framework and algorithms
are introduced in Section 2.2. Since the main motivation of this thesis is to transfer a
controller that was trained in simulation to another domain (i.e. the real-world or a different
simulation), the problem of simulation-to-reality transfer is described in Section 2.3. This
should provide a theoretical introduction which methods exist on how learned policies can
be transferred from a simulation to a real robot. As the additional goal of this thesis is
to learn more interpretable representations in form of disentangled representations using
variational autoencoders (VAEs), the fundamentals of approximate variational inference
and disentangled representation learning are summarized in Section 2.4.

2.1 fundamentals of information theory

Information theory is an important concept throughout this thesis and it is the theory
about measuring the information content that is present in a signal. Likewise the theory can
also be seen as measuring the uncertainty about information. Shannon [Sha48] established
this theory and defined the concept of entropy regarding information similar to the entropy
in thermodynamics:

Definition (Entropy). The entropy H(X) of a discrete random variable X following a
probability distribution P with probability mass function p(x) is defined by

H(X) = −Ex∼p [log p(x)] = −
∑
x

p(x) log p(x). (2.1)

In other words this can be thought of the average amount of information required to describe
the random variable X or more common the average uncertainty about this random variable
X. The continuous case H(X) = −

∫
p(x) log p(x)dx is known as differential entropy.

[CT06, pp. 13–16, 243]
This definition using the logarithm shows that likely events have a low information

content as they occur more often as less likely events that have a higher information content
(thus the information measurement is more uncertain). Furthermore, the information

3

2.1 fundamentals of information theory 4

content between two independent random variables is additive due to the calculation rules
of the logarithm. [GBC16, p. 71]

The entropy between two correlated random variables X and Y can be defined as the
joint entropy between X and Y :

Definition (Joint Entropy). The joint entropy H(X,Y) of two discrete random variables
X and Y following a joint probability distribution P with probability mass function p(x, y)
is defined by

H(X,Y) = −Ex,y∼p [log p(x, y)] = −
∑
x

∑
y

p(x, y) log p(x, y). (2.2)

This joint entropy is the union of the entropies of both random variables X and Y . The
mutual information on the other hand is a measure of the information content that both
random variables have in common. [CT06, pp. 16–17]

Definition (Mutual Information). The mutual information I(X,Y) of two discrete random
variables X and Y following a joint probability distribution P with joint probability mass
function p(x, y) and marginal probability mass functions p(x) and p(y) is defined by

I(X,Y) = Ex,y∼p

[
log p(x, y)

p(x)p(y)

]
=
∑
x

∑
y

p(x, y) log p(x, y)
p(x)p(y)

. (2.3)

Calculating the mutual information for a single random variable X results in the original
entropy definition I(X,X) = H(x) and therefore is often referred to as self-information.
[CT06, pp. 19–21]

In the context of machine learning, a probability distribution Q with probability mass
function q(x) is often estimated given samples from the real probability distribution P

with probability mass function p(x). Typically, the inefficiency of using Q instead of P is of
interest. The Kullback-Leibler (KL) divergence or relative entropy between two distributions
can be interpreted as a distance between those:

Definition (Kullback-Leibler Divergence). The Kullback-Leibler divergence between two
probability mass functions p(x) and q(x) of a random variable X is defined by

DKL(p ∥ q) = Ex∼p

[
log p(x)

q(x)

]
=
∑
x

p(x) log p(x)
p(y)

. (2.4)

The relative entropy is always non-negative and only 0 if and only if P = Q. The term
DKL(p ∥ q) is defined as forward KL divergence whereas DKL(q ∥ p) is defined as reverse
KL divergence. Both cases shall be distinguished as the KL divergence is not symmetric.
Because of this property and since it does not satisfy the triangle inequality, the relative
entropy is not a true distance measure. [CT06, p. 19]

All of those definitions can be transferred from discrete to continuous random variables
by replacing the sums with integrals over the random variables.

2.2 reinforcement learning 5

2.1.1 Information Bottleneck Method

Shannon [Sha48] developed the fundamentals to compress and transmit data but focused
less on extracting relevant information. In contrast, Tishby et al. [TPB99] point out that
information theory also provides concepts to quantify relevant information:

To extract relevant information from a signal, a quantization X̃ of a signal X is needed
which preserves maximum information about another signal Y , i.e. to extract a representa-
tion X̃ containing maximal information about an object Y in a given image X. The code
X̃ is referred to as bottleneck. Using the mutual information functional of Equation 2.3, it
is possible to measure information about Y in X̃:

I(X̃,Y) =
∑
x̃

∑
y

p(x̃, y) log p(x̃, y)
p(x̃)p(y)

(2.5)

The original signal X is compressed in the bottleneck X̃, therefore the information content
of X̃ cannot contain as much information like X about Y :

I(X̃,Y) ≤ I(X,Y) (2.6)

To this end, solutions of X̃ that contain maximum meaningful information about the signal
Y while minimizing the information content from the original signal X are desired. This
can be quantified by the functional

minL = min I(X̃,X)− βI(X̃,Y) (2.7)

in which the hyperparameter β serves as a Lagrange multiplier. High values of the hyperpa-
rameter β yield more meaningful representations while values of β near 0 result in better
compressed solutions. [TPB99]

2.2 reinforcement learning

In recent years much work has been done in the research area of RL. Many large-scale
projects (like [Sil+16; Sil+17b; Sil+17a; And+19; Akk+19; Tea19; Ber+19]) were performed
to show the potential of the created algorithms. In addition, many tools arised to train RL
agents (e.g. [Dha+17; Bro+16; Tas+20; Bea+16; Joh+16]). Furthermore, many subdisci-
plines like meta-learning, multi-task learning, imitation learning, hierarchical Learning, etc.
exist to solve different aspects of the overall reinforcement learning problem. RL can be
successfully applied on many low dimensional control tasks but can also be used with high
dimensional pixel inputs [Mni+13; Mni+16; And+19; Akk+19] making it the framework of
choice for this thesis.

This section shall serve as a overview of the most important concepts and algorithms
in the context of this thesis following the notation of the standard work Sutton et al.
[SB18], François-Lavet et al. [Fra+18], and Szepesvári [Sze10]. This starts by describing
the basic concepts of reinforcement learning which characterize our system and ends in

2.2 reinforcement learning 6

Environment

Agent

action rewardstate

Figure 2.1: The closed-loop interaction in a MDP. [SB18, p. 48])

the description of more sophisticated algorithms which will be used as learning framework
later in this thesis.

2.2.1 Markov Decision Processes

Reinforcement learning considers system which can be described as a Markov decision
process (MDP) [Bel57]. In principle all reinforcement learning algorithms are build around
the formalization of MDPs or a subtype of it. Sutton et al. [SB18] describes them as "[. . .]
a mathematical idealized form of the reinforcement learning problem." [SB18, p. 47]. MDPs
can also be seen as capsuled environments with which the learning agent interact. This
process can be seen in Figure 2.1. Everything outside the agent itself will be from now on
summarized as the environment. Mathematically these environments can be described as a
5-tuple.

Definition (Markov decision process). A Markov decision process (MDP) is a 5-tuple
⟨S,A, T ,R, γ⟩ which consists of

• a set of states S,

• a set of actions A which the agent is able to take,

• a reward function r : S ×A×S → R ⊂ R and

• state-transition probabilities T (s′, r|s, a) : S ×A×S → [0, 1] with the initial distri-
bution of starting states T (S0)

• γ as a discount factor for the reward over time which reflects the planning horizon of
the agent and must be in range [0, 1].

The variables s and a correspond to the state and action at a timestep t whereas s′ is
the state at the subsequent timestep t+ 1. Similar the reward is defined r(s, a, s′) =

E[Rt+1|St = s,At = a,St+1 = s′]. With a trial-and-error approach, the algorithm shall
solve the underlying MDP by learning an optimal policy π which maximizes the cumulative
reward G0 =

∑T
t=0Rt in the finite horizon case or the cumulative discounted reward

2.2 reinforcement learning 7

G0 =
∑∞
t=0 γ

t ·Rt in the infinite horizon case. Both types of cumulative rewards will be
called episodic return in the following with Gt as the episodic return calculated from
timestep t. [SB18, pp. 48–56]

A policy can either be a mapping from a state to the action itself in the deterministic
case π(s) : S → A or a mapping to a distribution of actions in the stochastic case
π(s, a) : S ×A → [0, 1]. At each time step t the agent chooses an action At resulting in
the subsequent state St+1 with reward Rt+1. This transition is based on the transition
probabilities T which completely describe the dynamics of the environment but might not
be deterministic and also not known in most cases. This dynamics might be induced by
a simulation engine or the real-world. Via the experienced reward signals of the selected
trajectories the agent shall improve his decision-making policy. [SB18, p. 58]

A necessary characterization of MDPs is the Markovian property [SB18; Fra+18, pp. 49,
235]. A decision process is markovian if all future aspects of the environment depend on
the information of the current observation only and that information from the past which
is not included in the current observation does not make a difference in the dynamics of
future timesteps:

P(St+1|St,At) = P(St+1|S0,A0, . . . ,St,At), and (2.8)

P(Rt+1|St,At) = P(Rt+1|S0,A0, . . . ,St,At) (2.9)

With this property the probability of an entire trajectory τ = (S0,A0, . . . ,ST ,AT) using
policy π is defined as

P(τ) = T (S0) ·
T∏
t=0

T (St+1,Rt+1|St,At)π(At|St) (2.10)

2.2.2 Value Functions

In many cases it is useful to know how valuable a specific state or state-action pair is
to make good decisions for further steps. Therefore, most reinforcement learning policies
incorporate some type of value function as a planning or guiding instrument. Since the
return is the main objective of the algorithm, the value of a state can be expressed as the
expected return the agent might achieve.

Definition (State-value function). The state-value function V π(s) : S → R is the expected
return from state s when following policy π

V π(s) = Eπ[Gt|St = s] (2.11)

This definition can be further extended by incorporating the action variable a.

2.2 reinforcement learning 8

Definition (Action-value function). The action-value function Qπ(s, a) : S ×A → R is
the expected return of following policy π after selecting action a in state s

Qπ(s, a) = Eπ [Gt|St = s,At = a] (2.12)

Both are connected by the following equation:

Q∗(s, a) = E [Rt+1 + γV ∗(St)|St = s,At = a] (2.13)

The optimal value functions are then determined by

V ∗(s) = max
π

V π(s) and Q∗(s, a) = max
π

Qπ(s, a) (2.14)

On the basis of the afterwards achieved rewards the value function can be optimized
to estimate the true value of the corresponding state (and action). Both types of value
functions can simply be estimated by using Monte Carlo (MC) methods through tracking
and averaging the achieved returns Gt from each single state s (and if required performing
action a at this state) and then following policy π:

V π(St)← V π(St) + α [Gt − V π(St)] = (1− α)V π(s) + αGt (2.15)

Besides, temporal-difference (TD) methods can be used also. More precisely this entails
updating the value of the function not on the basis of the return Gt of a trajectory but on
the basis of the directly achieved reward Rt and the estimates of the function values of the
next states (bootstrapping):

V π(St)← V π(St) + α [Rt + γV π(St+1)− V π(St)] = V π(St) + αδt (2.16)

The optimized TD-error δt at timestep t is defined as:

δt = Rt + γV π(St+1)− V π(St) (2.17)

Equation 2.15, Equation 2.16 and Equation 2.17 likewise apply to the action-value function
Q(s, a). [SB18, pp. 58, 59, 119, 120, 121]

2.2.2.1 Bellman equations

Given the complete MDP, the value function for a policy π can be calculate recursively
using the Bellman equation

V π(s) =
∑
a

π(a|s)
∑
s′,r

T (s′, r|s, a) [r+ γV π(s′)] (2.18)

by applying the Bellman operator Bπ : R|S| → R|S| to V π. This operator is defined as

(BπV) (s) =
∑
a

π(a|s)
∑
s′,r

T (s′, r|s, a) [r+ γV (s′)] ∀s ∈ S, v : S → R (2.19)

2.2 reinforcement learning 9

and can be applied to any value function as it yields another value function. The recursive
application of the Bellman operator onto the current approximation of the value function
converges to the true value function V π of policy π since the Bellman operator is a
maximum-norm contraction mapping. Therefore, the equation BπV = V has a single
solution only. [Sze10, p. 15]

Since the operator can be applied to arbitrary value functions, a similar result can be
obtained for the action-value function Qπ.

The Bellman equations are likewise defined for the optimal value functions by

V ∗(s) = max
a

∑
s′,r

T (s′, r|s, a) [r+ γV ∗(s′)] (2.20)

and
Q∗(s, a) =

∑
s′,r

T (s′, r|s, a)
[
r+ γmax

a′
Q∗(s′, a′)

]
. (2.21)

2.2.3 Policies

The policy defines how the agent selects actions. As mentioned before this can be either
done in a deterministic way by single values per dimension or in a stochastic way as a
distribution over actions.

Definition (Policy). A stochastic policy π is a distribution over actions given states,

π(a|s) = P(At = a|St = s) (2.22)

A deterministic policy π is a direct mapping from states to actions,

a = π(s) (2.23)

Moreover, policies can be divided into two main directions: Model-based and model-free
reinforcement learning. While in the first case the transition function T of the MDP is
learned and a normal planning algorithm can be used, a representation between states and
their corresponding actions is learned in the latter case. Model-free policies again can be
subdivided into pure value-based methods and policy gradients. [Fra+18, p. 238]

Value-based methods incorporate learned value functions to estimate how good a specific
state and/or action is for the agent. The information of these functions can be used to
perform the current best action which is expected to maximize the value function.

2.2.3.1 On- and Off-Policy Methods

In order to learn the optimal behavior, a policy must be able to collect and evaluate enough
data about the environment. Therefore, the policy has to explore the action and state
space to learn how to make good decisions. At the same time it shall exploit the gathered
data to empower the agent to make better decisions. The trade-off between both is called
the exploration and exploitation dilemma. [SB18, p. 3]

2.2 reinforcement learning 10

In the context of policies this can be addressed in an on- or off-policy manner:

• Off-policy methods incorporate two different policies: A policy π which actually learns
and which should be used to make optimal decisions (target policy) and a policy
β that is used for exploration to collect data (behavior policy). Those methods are
usually more sample efficient but introduce higher variance and require additional
concepts to incorporate the sampled data from β to π. [SB18, p. 103]

• On-policy methods use the learning policy π only. Even if the policy is near-optimal
already the assumption is that it is still inoptimal and explores due to this inoptimality.
In principle on-policy methods are generally simpler and converge faster even though
the converged solution could be a local optimum. [SB18, p. 103]

2.2.3.2 Policy Iteration

Given all components of a MDP an optimal policy π∗ can be obtained recursively through
evaluating a value function V π for the current policy π by applying the Bellman operator
from Section 2.2.2.1 and utilizing this value function afterwards to improve the policy π to
yield a better policy π′ that is greedy with respect to (w.r.t.) the current value function.
This procedure is called policy iteration and can be outlined as follows:

π0
E→ V π0 I→ π1

E→ V π1 I→ ... I→ π∗
E→ V ∗ (2.24)

However, in reinforcement learning the algorithm does not have access to all components of
the MDP. Therefore, this scheme must be performed in an approximated form by collecting
samples from the environment by applying the current policy w.r.t. the underlying value
function and using those samples to update the value function. [SB18, p. 80]

2.2.4 Q-Learning

An early off-policy reinforcement learning algorithm is Q-learning which approximates the
optimal action-value function Q∗ and uses this approximation to collect samples. Since
the algorithm is off-policy it uses a behavior policy for exploration which is derived from
the current action-value function but utilizes a greedy policy to update the action-value
function. The latter update is based on the TD error δt of the action-value function:

Q(St,At)← Q(St,At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St,At)

]
︸ ︷︷ ︸

δt

(2.25)

This value iteration algorithm is guaranteed to converge to the optimal value function Q∗

if the state-action pairs are discrete and if all pairs are continued to be updated or visited
indefinitely often. [SB18, pp. 130–131; Fra+18, pp. 243–244].

The algorithm struggles with high dimensional or continuous action spaces since in
those settings it cannot be guaranteed that the state-action pairs are visited enough thus

2.2 reinforcement learning 11

generalization is rarely possible [Mni+15; Fra+18, pp. 243–244]. To handle high-dimensional
state spaces function approximation can be used [Mni+15].

2.2.4.1 Double Q-Learning

The discussed Q-Learning algorithm includes calculating a maximum of the action-value
function in the target calculation in Equation 2.25. Problematically, this maximum is
calculated from estimated values. As those estimates will in most cases not actually fit
but rather will over- and underestimate the true values, the single calculated maximum
estimate will be expected to be greater than the true value. This induces a positive bias.
[SB18, pp. 134–135]

By double estimation of the action values it is possible to select the best suited value
and to estimate an action which results not in an overestimation of Q-values [Fra+18,
pp. 246–247].

2.2.4.2 Deep Q-Network (DQN)

Mnih et al. [Mni+15] combine the Q-learning algorithm with deep convolutional neural
networks and applied this on 49 different Atari 2600 video games directly learning from
pixels. The convolutional neural networks parametrized by θ serve as approximators for
the Q-value functions Q̂(St, aAt; θ) and use Equation 2.25 to update the weights:

θk+1 ← θk + α
[
Rt+1 + γmax

a
Q̂(St+1, a; θ−

k)− Q̂(St,At; θk)
]
∇Q̂(St,At; θk) (2.26)

In addition to this, DQN provides three additional changes that are nowadays also used in
many subsequent algorithms to stabilize learning.

First, collected experience in form of tuples (St,At,Rt+1,St+1) is stored in a replay
memory. During an update step the algorithm samples a random mini-batch from the
memory to update the weights according to Equation 2.26. Using replays of experience in
form of mini-batches results in smoother gradients compared to the original Q-learning
algorithm and reduces the variance between updates since the tuples in the batches are
not correlated.

Secondly, the TD target in Equation 2.26 depends on the current parameters θk which
can lead to instability of the parameters. To circumvent this problem, Mnih et al. [Mni+15]
include target networks that are used to calculate the target only. This replacement
decouples the current parameters θk from the target calculation since the target networks
parameters θ−

k are only updated after a certain number of Q-learning updates, C, by
duplicating the current weights θk.

Lastly, DQN clips the TD error δt = Rt+1 + γmaxa Q̂(St+1, a; θ−
k)− Q̂(St,At; θk) into

the interval [−1, 1].
Additional to those algorithmic changes, Mnih et al. [Mni+15] include a preprocessing

step of the input frames by resizing them from 210× 160× 3 pixels to 84× 84× 1 pixels
and by stacking multiple frames together to a single observation. The latter is necessary to

2.2 reinforcement learning 12

observe the full state as this is usually not observable in a single frame [SB18, p. 438]. A
similar preprocessing procedure is used for the algorithm proposed later in this thesis.

2.2.5 Policy Gradient Methods

Policy gradient methods in contrast to aforementioned value-based methods skip the usage
of value functions to choose an action and select actions directly without considering an
estimated quality value of a state and/or action. Thus, the probability that an action a in
state s at timestep t is taken can be written as πθ(a|s) = P{At = a|St = s, θt = θ} with θ
as the parameterization of the policy. More specifically, θ can represent the parameters of
a multi-layer perceptron (MLP) i.e. for low-dimensional observations or the parameters of
a convolutional neural network (CNN) for pixel-based observations.

A policy πθ is optimized so that it seeks to maximize the expected episodes return as
scalar performance measure

J(θ) = V πθ(s0) = Eπθ [G(τ)] =
∑
t

Eπθ [Rt] (2.27)

To reach this goal the parameters are updated via stochastic gradient ascent:

θt+1 = θt + α∇J(θt) (2.28)

with ∇J(θt) = ∇V πθt (St) (2.29)

with α as a beforehand defined learning rate. The policy gradient theorem [SB18, pp. 325,
334] proofs that for the derivative of the performance measure J the expression

∇J(θ) = Eπθ

[∑
a

∇πθ(a|St)Qπθ(St, a)
]

(2.30)

holds.
With ∇π = π∇ ln π and

∑
a πθ(a|St)Qπθ (St, a) = Qπθ(St,At) = Eπθ [Gt|St,At] this

equation can be rewritten as

∇J(θ) = Eπθ [Gt∇ ln πθ(At|St)]. (2.31)

With sampled trajectories this expression can be estimated, which changes the update rule
Equation 2.28 to

θt+1 = θt + αGt∇ ln πθt(At|St). (2.32)

This is known as the REINFORCE [Wil92] update rule or Monte-Carlo policy gradient.
Despite it has good convergence properties it is also affected by high variance. This can be
addressed by subtracting a baseline b(St) from the sampled return G [SB18, p. 329]:

θt+1 = θt + α (Gt − b(St))∇ ln πθt(At|St), (2.33)

2.2 reinforcement learning 13

Environment

Actor

action state

reward

Critic

value

Figure 2.2: The closed-loop interaction with an Actor-Critic architecture. [Sze10, p. 63]

where b(St) can be any function which is depended on St only. A good choice is an estimated
state-value function V π(St) or the advantage Aπ(St,At) which is defined as the difference
between the state-value and the action-value [PS08]:

Aπ(St,At) = Qπ(St,At)− V π(St) (2.34)

2.2.5.1 Actor-Critic Methods

As the return Gt is the sampled return achieved at the end of a trajectory and because
it is rarely known which exact state-action transitions yield this return, Gt is of high
variance. On the other hand, TD methods can reduce the variance and use an estimated
value function Qπθ (St,At) in Equation 2.33 instead. In this case not only a policy must
be learned but also a value function. Those methods in which a value function is used as a
baseline and in which it is used to update the value estimate for a state from the estimated
values of subsequent states refer to actor-critic methods. The actor is the policy which
predicts actions and the critic represents the approximated value function for bootstrapping.
[SB18, p. 331]

2.2.6 Maximum Entropy Reinforcement Learning

The entropy H measures the average uncertainty in a random variable. This information-
theoretical concept can be transferred to stochastic policies as an uncertainty measure of

2.2 reinforcement learning 14

the policy in a specific state. The entropy of a discrete stochastic policy π at timestep t

can therefore be defined as

Ht(π(·|St)) = E[− log π(·|St)] = −
∑
a

π(a|St) log π(a|St) (2.35)

Such an entropy term can be used to ensure continuous exploration as the entropy of the
policy during training could be measured and encourage it to take actions that yield higher
entropy values. This regularizes the agent in exploiting current knowledge during learning.
By including the entropy formulation as an additional reward, the value of a state changes
to

V (St) =
∑
t

Eπ [Rt − α log π(·|St)] = Eπ [Q(St,At)− α log π(·|St)] (2.36)

As policy gradient methods strive to maximize this expected return (see Equation 2.27),
the training objective changes to

J(ϕ) = Eπϕ [Q(St, ·)− α log πϕ(·|St)] = DKL [expQ(St, ·) ∥ πϕ(·|st)] (2.37)

with α as a weight-factor for the importance of the entropy term H against the return. The
optimal values of this factor depends upon the underlying MDP and his reward function
R. Besides maximizing the reward in each state-action pair and thus exploiting already
achieved knowledge, the objective in Equation 2.37 encourages the policy to maximize its
own entropy. A goal that can be achieved by exploring more widely. Alternating between
evaluation of Q(St,At) and improvement of π(At|St) results in a policy iteration scheme.
[Haa+18b; Haa+18a]

2.2.6.1 Soft Actor-Critic

Continuous environments require an approximate form of policy iteration as the exact
form can in most cases be calculated for tabular domains only [SB18, p. 73]. To this end,
Haarnoja et al. [Haa+18b; Haa+18a] introduces the Soft Actor-Critic (SAC) algorithm, an
maximum-entropy reinforcement learning algorithm that learns a parameterized stochastic
policy πϕ(a|s) as well as two parameterized Q-functions Qθ1(St,At) and Qθ2(St,At) to
estimate the state-action value Q(St,At). Latter are trained by minimizing the Mean
Squared Bellman Error (MSBE):

J(θi) = E

[
1
2

(
Qθi(St,At)−

(
Rt + γ

(
min
j=1,2

Qθ̄j (St+1,At+1)− α log πϕ(At+1|St+1)

)))2
]

(2.38)
with parameters θ̄1 and θ̄2 of the target Q-functions calculated from a moving average of
the respective Q-function weights θ1 and θ2.

Using the resulting Q-functions from Equation 2.38, the state-action value Q(St,At)
can be estimated in objective in Equation 2.37 by modifying the original objective to:

J(ϕ) = Eπϕ

[
min
i=1,2

Qθi(St, ·)− α log πϕ(·|St)
]

(2.39)

2.3 simulation to reality transfer (sim-to-real) 15

This objective can be maximized via stochastic gradient ascent to calculate an update for
the policy parameters ϕ. Since backpropagation of a stochastic policy is usually due to the
sampling process mathematical infeasible, the algorithm makes use of the reparametrization
trick: If the policy is defined as a normal probability density πϕ(a|s) = N (µ,σ) over actions1,
those actions can be calculated by

a = µ+ σ⊙ ε (2.40)

where ε ∼ N (0, 1)

This shifts the actual sampling process into the random variable ε and makes µ as well as
σ deterministic allowing to backpropagate through the function approximator.

In addition, SAC learns the already addressed entropy weighting factor α as the entropy
varies "[...] unpredictably both across tasks and during training as the policy becomes
better." [Haa+18a]. Learning the factor results in a constrained optimization problem of
the original maximum entropy objective in Equation 2.39:

max
π0:T

Eπ

[
T∑
t=0

Rt

]
s.t. Eπ [− log πt(At|St)] ≥ H ∀t (2.41)

with H as a desired minimum expected entropy. Haarnoja et al. [Haa+18a] shows through
dual formulation of the problem that the optimal factor α⋆t can be calculated with

α⋆t = arg min
αt

Eπ⋆t
[−αt log π⋆t (At|St;αt)− αtH̄] (2.42)

resulting in an additional objective function for the factor:

J(α) = Eπt [−αt log πt(At|St)− αtH̄] (2.43)

The method can be entirely trained off-policy alternating between experience collection
with the current policy into a buffer and updating the Q-functions as well as the policy
parameters with batch samples from the replay buffer. SAC is used in Chapter 5 as
the underlying learning algorithm. Algorithm 1 describes SAC in pseudocode. [Haa+18b;
Haa+18a]

2.3 simulation to reality transfer (sim-to-real)

After specifying how general policies can be learned through the framework of RL, the
question is tackled how the learned behavior can be used in the real-world if the algorithm
learns in simulation only.

This section is supposed to introduce challenges of RL for robotics especially the transfer
of learned behavior from simulation to a real robot. Therefore, the sim-to-real gap is defined.
Furthermore, the theoretical foundations of promising approaches to bridge the sim-to-real
gap like domain adaptation (DA) and DR are described.

1 more precisely, the underlying function approximator calculates mean µ and variance σ2 of the distribution

2.3 simulation to reality transfer (sim-to-real) 16

Algorithm 1 Soft Actor-Critic [Haa+18a]
1: procedure SAC(ϕ, θ1, θ2,α) ▷ Initial parameters
2: θ̄1 ← θ1, θ̄2 ← θ2 ▷ Initialize target network weights
3: D ← ∅ ▷ Initialize an empty replay buffer
4: for each iteration do

5: for each environment step do

6: At ∼ πϕ(At|St) ▷ Sample action from the policy
7: St+1 ∼ T (St+1,Rt|St,At) ▷ Sample transition from the environment
8: D ← D∪ {(St,At,Rt,St+1)} ▷ Store the transition in the replay pool
9: end for

10: for each gradient step do

11: θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} ▷ Update Q-function parameters
12: ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ▷ Update policy weights
13: α← α− λα∇̂αJα(α) ▷ Adjust temperature
14: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} ▷ Update target network weights
15: end for

16: end for

17: return Policy πθ with ϕ, θ1, θ2,α
18: end procedure

2.3.1 Challenges of Real-World Reinforcement Learning

A fundamental challenge of reinforcement learning in the context of robotics is data
availability and efficiency. Most RL algorithms need immense amounts of data to work
properly and need to explore the action space sufficiently enough. Applications in the
real-world are restricted to work safely and agents cannot perform safety-critical actions
resulting in a limited action space. Besides, the data availability, the data collection process
requires an equivalent amount of time. Because of those costs and the slow learning
capabilities, the learned behaviors are limited in real-world applications. Dulac-Arnold et al.
[DMH19] present a more general overview of the challenges of real-world reinforcement
learning including but not limited to robotics:

1. Offline learning from pre-collected data of another control policy

2. Partially observable decision processes

3. Learning from limited data

4. High-dimensional continuous state and action spaces

5. Safety constraints that are not allowed to be violated

6. Unspecified, multi-objective or risk-sensitive reward functions

7. Explainable policies and actions

8. Real-time capabilities meaning that the agent is able to run at the frequency of the
control system

2.3 simulation to reality transfer (sim-to-real) 17

9. Delays in the control system especially the delay in sensors, actuators and the reward
signal

Training agents in a simulation seems promising for some of these challenges: Safety
constraints can be violated in a simulator without consequences while at the same time
the simulator can provide an infinite amount of data by-passing the necessity to learn from
limited or pre-collected data. Furthermore, many different algorithmic design choices can
be tested in a simulator, i.e. making it easier to find appropriate reward functions and
policy architectures. But even with high fidelity simulators, the transfer from simulation to
the real-world is challenging due to discrepancies between simulation and the real-world
[Tob+17].

2.3.1.1 Sim-to-Real gap

The sim-to-real or reality gap describes inconsistencies between physical parameters of a
simulation and the real-world (including but not limited to mass, density, light intensity,
illuminance, friction, damping, glossiness, etc.). Furthermore, this gap is further widened
by incorrect physical modeling since simulators are limited by physical assumptions causing
that it is not able to compute the correct physical behavior. Thus, the environment of the
simulation is only able to approximate the real transition model T̂ (s′, r|s, a) ≈ T ⋆(s′, r|s, a).
[Pen+18]

2.3.2 Domain Adaptation

Domain adaptation (DA) is one method to bridge the sim-to-real gap and related to transfer
learning of deep neural networks (DNNs) [PC14]. In transfer learning a trained DNN is
adapted such that it can perform on a different domain where data is less available. In
general, a concept called fine-tuning is necessary to adapt the parameters of the DNN so
that they can be used in the new domain. Similar, in reinforcement learning and specifically
sim-to-real transfer, the reinforcement learning agent is trained in simulation (source
domain) and gets data of the real robot (target domain) for adaptation. The principle
assumes that the representations in the source domain share common characteristics in the
target domain [Pen+18].

Tobin et al. [Tob+17] points out that DA for robotics is also related to iterative learning
control where a update scheme is used to improve the dynamics model for the controller
with real-world data. In DA however the controller/agent itself is improved since the
underlying algorithm usually does not rely on a known dynamics model if it is model-free.

2.3.3 Domain Randomization

On the other hand, domain randomization (DR) can be seen as the zero-shot transfer
learning version of sim-to-real transfer (even though DR and DA are not mutually exclusive).
DR trains an agent solely with synthetic data and is able to transfer it to the real-world

2.3 simulation to reality transfer (sim-to-real) 18

Algorithm 2 Meta-Algorithm for DR in combination with a policy gradient algorithm
Require: learning rate α, DR hyperparameters ψ, policy gradient objective J

1: procedure DR(ψ)
2: Randomly initialize parameters θ of policy πθ
3: while not done do

4: Sample domain parameters ξ ∼ Pψ
5: Collect trajectories τ using policy πθ in domain eξ
6: Compute adapted parameters θ with gradient ascent: θ ← θ+ α∇θJ(θ, τ)
7: end while

8: return Policy πθ
9: end procedure

without fine-tuning by adapting physical and visual parameters of the data during the
learning process in the source domain. In the context of simulated environments, this shall
introduce a higher variability in the experienced dynamics in the source domain which
might be prominent in the target domain.

More formally, a simulation environment eξ parameterized by ξ ∈ RD is defined, where
D is the number of changeable parameters. In the context of DR, ξ represents a configura-
tion of different physical parameters that can be changed in the simulation environment
and is sampled from a distribution ξ ∼ Pψ. The probability distribution Pψ can again
be parameterized by a set of variables ψ, e.g. the mean and the variance of a normal
distribution. The configuration ξ changes the system dynamics and/or appearance causing
the approximate transition probabilities T̂ (s′, r|s, a, ξ) of the environment to be depended
on the configuration. [Pen+18]

Because of this parameterization the introduced policy gradient learning objective in
Equation 2.27 is modified under the DR setting to

J(θ) = Eξ∼Pψ

[
Eπθ,τ∼eξ [G(τ)]

]
(2.44)

so that the policy πθ seeks to maximize the expected return across the distribution Pψ of
dynamics models. This policy gradient optimization shall result in a generalization of the
policy across the discrepancies between the different dynamics models. The assumption
behind DR is that this generalization includes the real-world transition model T ⋆. [Pen+18]

Algorithm 2 presents the general scheme of learning a policy with DR.

2.3.3.1 Automatic Domain Randomization

Automatic Domain Randomization (ADR) [Akk+19] is an recent algorithm which combines
DR with curriculum learning. The algorithm automatically generates new and harder
environments by increasing the parameters of the distribution Pψ for domain randomization
based on the average performance of the agent in the environment so far. Thus it creates
an endless curriculum.

In each training iteration one parameter ξi is randomly chosen to take one boundary
value of its distribution. The residual parameters are sampled from the distribution Pψ.

2.4 representation learning 19

Encoder Decoder

Figure 2.3: The general structure of an AE: The parametrized encoder qϕ maps the input x to
a lower dimensional feature vector z whereas the decoder pθ maps this vector back
to the input space. Both encoder and decoder are trained jointly by minimizing the
error between input x and reconstruction x′. Since the decoder pθ tries to reconstruct
the input x using the lower dimensional feature vector z only, this vector must be a
compressed representation of x.

The agent is then evaluated on the environment. If the agent’s average performance is
sufficient enough after a number of timesteps, the distribution parameters ψ can be adapted
to include harder or simpler scenarios. These parameters are simply updated with a step
size hyperparameter ∆. If the performance exceeds predefined thresholds tH or tL, the
parameters are increased if tH was reached or decreased if tL was reached. No parameters
of the agent are updated during the execution of the algorithm. Instead, policy training
and ADR evaluation alternate.

2.4 representation learning

In machine learning it is often of interest to train a model that learns a representation of
the observed inputs as appropriate representations make learning subsequent tasks easier
[GBC16; BCV13]. Particularly, it might be useful to learn representations without the
necessity of using many labels i.e. in an semi-, weakly- or unsupervised manner. Therefore,
this section is about representation learning. Especially, the first part introduces the
unsupervised representation learning method named autoencoder (AE) while the second
part describes the probabilistic version, the variational autoencoder (VAE). How enhanced
versions of aforementioned methods can be used to learn representations that disentangle
the underlying FoV in the data is described at last.

2.4.1 Autoencoders

A family of methods that learn representations unsupervised is named autoencoder (AE).
The basic task of an AE is to reconstruct a given input x ∈ X using an encoder qϕ and
a decoder pθ parametrized by ϕ and ψ. The encoder maps from the input space X to a

2.4 representation learning 20

(perhaps lower dimensional) feature space Z whereas the decoder maps from this feature
space back to the input space X . Specifically, given an input x the encoder computes the
output z = qϕ(x). Using this feature vector the decoder maps z back to the input space
with x′ = pθ(z) = pθ(qϕ(x)). Both encoder and decoder are trained jointly by minimizing
the error between input x and reconstruction x′. Usually this is done by minimizing the
mean squared error (MSE) between inputs and reconstructions of a given dataset xk ∈ D:

min J(D) = min
∑
k

∥xk − pθ(qϕ(xk))∥2 (2.45)

This optimization is usually performed using stochastic gradient descent (SGD) by training
a multilayer perceptron (MLP) or convolutional neural network (CNN). The structure of
an AE is illustrated in Figure 2.3. [GBC16, pp. 493–494]

By using fewer dimensions in the feature space Z than the dimensions of the input space
X an AE can be used as dimensionality reduction method [GBC16, p. 515].

2.4.2 Variational Autoencoders

A variational autoencoder (VAE) [KW14] is a deep latent variable model that is a probabilis-
tic version of the deterministic AE as the feature vector z is sampled from a parametrized
distribution qϕ(z|x) instead of being a result of a deterministic calculation. Using a VAE
instead of a deterministic AE allows to generate new data.

A latent variable model includes model variables z that are part of the model i.e. a DNN
but that are not observed. Given observations x to be modeled, a latent variable model is
described by a joint distribution pθ(x, z) in the unconditional case and as a conditional
joint distribution pθ(x, z|y) in the case if the model condition observation x and latent
variable z on a context y. The distributions are parametrized by θ. [KW+19]

Marginalizing the distribution over the latent variables yields the marginal likelihood:

pθ(x) =
∫
pθ(x, z)dz

=
∫
pθ(x|z)pθ(z)dz

=
∫
pθ(z|x)pθ(x)dx

(2.46)

Problematically, using DNNs makes the calculation of the marginal likelihood intractable
as p(x|z) and p(z|x) are intractable due to the complicated, nonlinear structures of neural
networks [KW14].

Nevertheless, approximations are possible by incorporating a parametric inference model
qϕ(z|x) with variational parameters ϕ. In traditional variational inference (VI) methods,
parameters are typically not shared over datapoints. Instead those methods optimize
parameters for each datapoint separately. However, in VAEs each datapoint shares the
variational parameters resulting in amortized variational inference [GG14]. The optimization

2.4 representation learning 21

of these parameters ensures qϕ(z|x) ≈ pθ(z|x) by maximizing the log-likelihood of observing
sample x:

log pθ(x) = log
∫
pθ(x, z)dz

= log
∫
pθ(x, z)qϕ(z|x)

qϕ(z|x)
dz

= log Eqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]

≥ Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
; Jensen’s inequality

= Eqϕ(z|x) [log pθ(x, z)] +H(qϕ(z|x))︸ ︷︷ ︸
ELBO

= Eqϕ(z|x) [log pθ(x|z) + log pθ(z)] +H(qϕ(z|x))

= Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x)

[
log pθ(z)

qϕ(z|x)

]
= Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ pθ(z))

(2.47)

The resulting functional is known as evidence lower bound (ELBO) since it is a lower bound
on the log-likelihood of the data log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ pθ(z)).
The difference between the left and the right hand side of the inequality Equation 2.47 is
the KL divergence DKL (qϕ(z|x) ∥ pθ(z|x)) as can be shown by directly reformulating the
original objective qϕ(z|x) ≈ pθ(z|x):

DKL (qϕ(z|x) ∥ pθ(z|x)) = Eqϕ(z|x)

[
log qϕ(z|x)

pθ(z|x)

]
= Eqϕ(z|x) [log qϕ(z|x)]−Eqϕ(z|x) [log pθ(x, z)] + Eqϕ(z|x) [log pθ(x)]

= −Eqϕ(z|x) [log pθ(x, z)]−H(qϕ(z|x))︸ ︷︷ ︸
−ELBO

+Eqϕ(z|x) [log pθ(x)]

(2.48)

Since the log-probability of the right hand side does not depend on the posterior q, the
result indicates that maximizing the ELBO is equal to minimizing the KL divergence.
Latter is minimal if the posteriors q and p are equal. [Jor+99; BKM17; KW+19]

Maximizing the ELBO yields a better generative model as the optimization approximately
maximizes the marginal likelihood pθ(x) while at the same time it minimizes the KL-
divergence between the approximate posterior distribution qϕ(z|x) and the true posterior
pθ(z|x). [KW+19]

Given a dataset D with independently and identically distributed (i.i.d.) observations
x ∈ D it is now possible to jointly optimize the parameters ϕ and θ using stochastic
gradient descent (SGD). The optimization minimizes the negative ELBO iteratively using
minibatches from the dataset. Calculating an estimate of the ELBO includes calculating the

2.4 representation learning 22

Encoder Decoder

Figure 2.4: The general structure of a VAE: Similar to an AE, a VAE maps the input x from
the input space X to a lower dimensional feature vector z that is sampled from a
distribution qϕ(z|x) with parameters ϕ. The decoder pθ(x|z) then maps the sample z
back to the feature space X . The posterior distribution qϕ usually takes the form of an
isotropic Gaussian with mean µ and standard deviation σ.

density qϕ(z|x) in order to sample z ∼ qϕ(z|x). A common choice is an isotropic Gaussian
posterior:

qϕ(z|x) = N (z;µ, diag(σ2)) (2.49)

The distribution parameters µ and σ are the outputs of the DNN with parameters ϕ. This
choice also determines the prior p(z) to take the form of an isotropic unit Gaussian:

p(z) = N (0, I) (2.50)

Using SGD the procedure computes a Monte Carlo (MC) estimate w.r.t. parameters ϕ.
The gradient of this estimator is intractable due to the expectation of the ELBO over the
distribution qϕ. By reparametrizing the ELBO, a gradient of the MC expectation estimate
w.r.t. ϕ can be calculated. This is similar to the reparametrization of the policy output in
Equation 2.40 if a isotropic Gaussian posterior is used: [KW14]

z = µ+ σ⊙ ε (2.51)

where ε ∼ N (0, 1)

A VAE can learn representations of given inputs in an unsupervised manner and can be
used for downstream tasks like reinforcement learning [Nai+18; HS18; Haf+19; Haf+20;
Yar+21].

2.4.3 Disentangled Representations

This section serves as an overview of disentangled representations and how generative
factors of data can be learned in an unsupervised manner using the framework of VAEs.
Therefore, the concept of disentangled representation learning is defined and criteria that

2.4 representation learning 23

those representations shall obey are established based on recent literature. In order to train
generative models to learn disentangled representations, different methods based on VAEs
are introduced.

2.4.3.1 Disentangle Explanatory Factors of Variation

For an AI to act truly intelligent, it shall understand, recognize and keep track of the
world around [RN09, p. 1045]. Bengio et al. [BCV13] assumes that this can only be
accomplished if it can discover and disentangled the underlying explanatory factors hidden
in the observations. Those explanatory factors are known as factors of variation (FoV).
Therefore, it is assumed that observations are generated by a two-step generative process:
A set of factors of variation S ∈ Rn are sampled from a distribution P (S) with probability
mass function p(s). With these factors the actual observation X ∈ Rm can be sampled
from the conditional distribution p(x|s). [Loc20]

According to Bengio et al. [BCV13] the goal is to learn a representation z ∈ Rn of
which distinct dimensions are sensitive to changes of specific FoV while being invariant
to others. This is the intuition behind disentangled representations. Although no clear
definition of disentangled representations has yet been agreed upon, previous approaches
have in common that they align to intuitive characteristics of disentangled representations
[Hig+18]. Those can be described by three criteria [EW18; RM18]: modularity, compactness
and explicitness.

• Modularity denotes that each dimension of the representation should encode infor-
mation about one FoV only.

• In a compact representation a FoV is encoded by a single dimension or by a small
number of dimensions.

• Explicitness expresses whether there is a simple transformation (e.g. linear) between
the dimension and the encoded FoV.

However, it is not generally agreed upon if the latter criterion is required for a representation
to be disentangled [Hig+18].

To ensure disentanglement of the FoV in the learned representations, disentanglement
should be measurable. Problematically, due to different definitions which share a common
intuition only, there exist several evaluation metrics inconsistent to each other. Furthermore,
those metrics assume access to ground-truth factors of the evaluation data.

A method to inspect the representation visually without requiring labels are latent
traversals. Given a sample x, the fully trained VAE can encode x into a representation
z. This representation can now be evaluated by freezing all dimensions of it except one,
i.e. zi. It is now possible to traverse the dimension zi and to generate reconstructions x′

based on the current value of zi and the residual frozen dimensions of z. If zi disentangles
a single FoV this should be visible in the reconstructions as only a distinct factor should
change between the reconstructions. [Hig+17a]

2.4 representation learning 24

2.4.3.2 Unsupervised Disentangled Representation Learning

To learn disentangled representations, variants of variational autoencoders [KW14] were
proposed as the parameters of a VAE learns to mimic hidden random processes that are
assumed to be the FoV [KW14].

Higgins et al. [Hig+17a] adapts the original VAE objective by introducing an additional
hyperparameter β in front of the KL divergence term of the ELBO:

Eqϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x) ∥ pθ(z)) (2.52)

Setting β > 1 results in a stronger pressure on the posterior qϕ as the encoder is forced to
match the factorized Gaussian prior pθ. This constrains the capacity of the latent bottleneck
and encourages the encoder to learn disentangled representations. The intuition behind
this is that a disentangled representation is the most efficient representation of the data.
By constraining the capacity of the bottleneck the objective enforces the encoder to adopt
this most efficient encoding. [Hig+17a]

Burgess et al. [Bur+18] compares the β-VAE loss in Equation 2.52 to the information
bottleneck method (see Section 2.1.1):

I(X̃,X)− βI(X̃,Y) (2.53)

Considering this principle, the KL divergence of the β-VAE objective can be seen as an
upper bound on the amount of information which can be transmitted through the latent
representation. The capacity to transmit additional information through the representation
is 0 if the KL divergence is 0. The ELBO encourages the encoder to embed points nearby
in the latent space. The posterior qϕ(z|x) shall match the factorized Gaussian prior and
can only reduce the mean values or broaden the variances to do so. But both results
in a greater degree of overlap between the approximate posterior distributions. This
will go on the costs of the log-likelihood of the objective as samples from different true
posteriors are not discriminable in this case. Therefore, a strong bottleneck pressure (as it
is the case for the β-VAE) forces the posterior to map similar points as much as possible
nearby while preventing too much overlap of the Gaussians to preserve discriminability.
Burgess et al. [Bur+18] key hypothesis is that this is only feasible if the posterior encodes
components that contributes differently to the log-likelihood of the objective. Therefore, the
capacity-constrained posterior only encodes information that contribute to the mentioned
log-likelihood sufficient enough. For instance, encoding information about the color of a
large object in an image contributes more to the objective than the color of a small object.
[Bur+18]

The authors propose to improve disentanglement by increasing the capacity of the
bottleneck with a target KL term C:

L(θ,ϕ;x, z,C) = Eqϕ(z|x)[log pθ(x|z)]− γ |DKL(qϕ(z|x)∥ p(z))−C| (2.54)

2.4 representation learning 25

Rank PairingUnsupervised Restricted Labeling Match Pairing

Figure 2.5: Types of weak supervision: In restricted labeling the algorithm observes samples x and
labeled factors sI for a distinct subset of factors SI . In match pairing samples x and x′

share a number of known factors I. In rank pairing on the other hand the samples do
not have to share factors as only the relation y between the factor instances sI and s\I
is observed by the agent. [Shu+20]

Increasing this target KL term during training reduces the pressure on the posterior
qϕ(z|x) to match the unit Gaussian prior p(z) and releases additional capacity in the
representation. This should encourage the algorithm to encode additional information into
the representation that did not improve the log-likelihood Eqϕ(z|x)[log pθ(x|z)] significant
enough so far. [Bur+18]

2.4.3.3 Weakly-Supervised Disentangled Representation Learning

Recently, Locatello et al. [Loc+19] showed that it is impossible to learn disentangled
representations in an unsupervised manner without inductive biases on the model or data.
For this reason, weakly-supervised algorithms for learning disentangled representations
were proposed [BTN18; Hos19; Loc+20]. Shu et al. [Shu+20] categorizes the main different
approaches for weakly-supervised disentanglement and describes additional criteria for
disentangled representations similar to those of Eastwood et al. [EW18] and Ridgeway
et al. [RM18]. The main methods using weak supervision partition the FoV in two subsets
S = (SI ,S\I) with |S| = n. These methods either observe the subset of factors SI as
additional input to samples x from X (restricted labeling) or the factors are shared over
multiple samples. The latter case can be divided into match pairing and rank pairing. While
in match pairing the samples x and x′ share a known subset of factors I (i.e. si = s′

i ∀i ∈ I),
in rank pairing only the ratio between observations x and x′ is known via an indicator
variable y (i.e. si ≥ s′

i ∀i ∈ I). An overview is depicted in Figure 2.5. [Shu+20]
The Group-based Variational Autoencoder (GVAE) of Hosoya [Hos19] and the Adaptive

Group-based Variational Autoencoder (Ada-GVAE) of Locatello et al. [Loc+20] use match
pairing as weak supervision signal. Furthermore, both methods assume that the number of
factors k = |\I| in which the samples differ is constant during training.

2.4 representation learning 26

Given samples x and x′ that share a known number of factors n− k = |I| it is possible
to enforce structure in the approximated posterior qϕ(z|x) as the true posterior follows:

p(zi|x) = p(zi|x′) ∀i ∈ I, (2.55)

p(zi|x) ̸= p(zi|x′) else. (2.56)

If the indices I are known it is possible to enforce the constraint in Equation 2.55 during
training, the approximate posteriors can be averaged for each of both samples:

q̃ϕ(zi|x) = avg (qϕ(zi|x), qϕ(zi|x′)) ∀i ∈ I (2.57)

q̃ϕ(zi|x) = qϕ(zi|x) else. (2.58)

The same applies for sample x′ whereby the averaging of the posterior distribution in
Equation 2.57 is defined by:

µ̂ =
1
2 (µ+ µ′), σ̂ =

1
2 (σ+ σ′) (2.59)

This results in an combined β-VAE objective:

Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x′) [log pθ(x′|z)]

− βDKL (q̃ϕ(z|x) ∥ pθ(z))− βDKL (q̃ϕ(z|x′) ∥ pθ(z)) (2.60)

In contrast to the work of Hosoya [Hos19], the algorithm of Locatello et al. [Loc+20] does
not observe the indices of shared factors I but estimates them for each set of samples
using the KL divergence of the posterior distributions of the samples and choosing those
n− k indices whose KL divergence is smallest. Locatello et al. [Loc+20] proofed also that
a learned posterior q(z|x) is disentangled given unlimited samples x and x′ that comply to
aforementioned assumptions. Therefore, weakly-supervised methods that use data which
align to the concept of match pairing can be used to learn disentangled representations
reliably. [Hos19; Loc+20]

3
R E L AT E D W O R K

In the last years, the topic of vision-based reinforcement learning was very prominent but
mostly in simulation only. Due to the reality gap in simulation and the large amount of
training data needed in the real-world, most training is performed on low-dimensional
states. On the other hand, disentangled representation learning is currently a task which is
evaluated on toy data only and mostly not used for downstream task, especially RL.

In this chapter, related work with respect to two similar but not mutually exclusive
directions is described: General vision-based RL for robotics and simulation to reality
transfer which includes but is not limited to domain randomization. Furthermore, recent
methods combining disentangled representations and RL are reviewed.

3.1 vision-based reinforcement learning

A first major attempt on vision-based RL and a catalyst for RL research is the work of
Mnih et al. [Mni+13]. They show that it is possible to train agents with Q-Learning solely
on high dimensional pixel-based observations using CNNs, replay buffers for off-policy
training to prevent catastrophic forgetting and careful tuning of the image preprocessing.
During the collection of the four frames, the most recent action is repeated in a row.

Since this first success on images, vision-based methods significantly underperformed
compared to state-based methods in terms of efficiency and overall performance. Regarding
performance, the original deep Q-learning algorithm was updated with improvements
including double Q-learning [Wan+16; HGS16; Hes+18]. In recent time, the efficiency
of vision-based RL methods gained interest. Yarats et al. [Yar+21] combines SAC with
autoencoders and observed that using VAEs prevent the agent from learning more efficient.
The authors depict that using deterministic AEs is a better solution. Laskin et al. [LSA20]
combine contrastive learning with RL to jointly train a vision-module and a policy by using
a contrastive auxiliary task. For the contrastive loss calculation, image pairs are generated
by applying random shifts on an original, larger image. Similar, Stooke et al. [Sto+21] use
a contrastive loss between observations over multiple timesteps and random shifts. Yarats
et al. [Yar+21] use simple data augmentation methods on top of standard RL policies by
regularizing the action-value functions of the critic with those image augmentations.

27

3.2 vision-based robot learning 28

3.2 vision-based robot learning

In addition to describing methods on vision-based RL with evaluation in simulation only,
this section focuses on learning-based control for robots based on high-dimensional pixel
inputs. For instance, there exist numerous different approaches trying to learn grasping
policies and therefore focusing on relatively slow dynamical systems. One of the first
successful attempts of vision-based RL on robots is the work of Levine et al. [Lev+16]. The
authors train a policy based on a convolutional neural network end-to-end via a guided
policy search method. The network takes 240× 240× 3 raw image observations as well as
the current robot configuration as input and outputs the needed motor torques. Unlike in
the work of Mnih et al. [Mni+13] no frame stacking is used. The authors conclude that
the method’s generalization ability is moderate only so that the policy cannot perform in
settings with disturbances.

Instead of using one robot, multiple robots can be used simultaneously to train a single
policy on raw images only by applying a scalable distributed update scheme as seen in the
work of Kalashnikov et al. [Kal+18] and Levine et al. [Lev+18]. Such a learned policy is
robust to unseen objects and can respond dynamically to upcoming disturbances. But even
if the algorithm does not need much human intervention, it still needs much real-world
data to accomplish this behavior which is expensive, especially if using multiple robots. In
contrast, Zhu et al. [Zhu+20] show how to efficiently train a reinforcement learning agent in
real-world scenarios on a single robot without human intervention. They propose a learning
pipeline in which the user provides goal images of successful scenes that the robot should
achieve so that no reward function must be specified. Zhu et al. [Zhu+20] combine learning
of a task controller and learning of a disturbance policy that should ensure robustness
against arbitrary initial states. However, the environment must be designed in such a way
that safe exploration is possible without failure states. Therefore, training in simulation
might be more promising.

Imitation learning [Zhu+18; Fin+17] can also be used to train real-world policies from
vision by using demonstrations. Those needed demonstrations can be safely collected by a
human or another controller. But while collection by humans is expensive, it is possible
that another controller may not even exist. Furthermore, it is not clear if the learned
behavior is robust or generalizes at all, or if it overfits the demonstration data heavily.

The integration of standard control methods (i.e. model predictive control) in combination
with vision-based learning is also possible. Finn et al. [FL17] use a video-prediction model for
a model predictive controller with a goal-specifying image as its first input. Unfortunately,
the authors do not examine how the method generalizes and if it is robust to unseen
situations except there is much room for improvement. In the work of Zeng et al. [Zen+19]
a controller learns to grasp and to throw objects in different positioned boxes by planning
with an analytical model and additionally learns systems dynamics which cannot be
modeled easily (i.e. aerodynamics).

3.3 sim-to-real & domain randomization 29

3.3 sim-to-real & domain randomization

The reality gap or also called sim-to-real gap was already introduced in Section 2.3 of
Chapter 2. With growing interest in robotics and real-world reinforcement learning in
the past years, the problem of closing the sim-to-real gap has gained momentum too. In
classical control, the sim-to-real gap is commonly bridged by system identification [Lju99].
But for more complex problems, system identification is not a general solution due to
uncertainties, errors in modeling, the necessity of prior knowledge, etc. [Lju91].

Similar to system identification, other methods propose to utilize real-world data to
assist a simulation of the system during the training pipeline for a successful sim-to-real
transfer. For instance, Hwangbo et al. [Hwa+19] learn an actuator network on a minimal
set of real-world data to map joint position errors to joint torques. The network is then used
to assist a rigid body simulation during training of a robust TRPO policy. The complete
method achieves robustness to different situations (i.e. high-speed locomotion, recovery
from a fall, etc.) by learning multiple control policies for different behaviors in a curriculum.
The authors argue that since the policies are trained on simulated robots with randomized
inertial properties and noisy velocity measurements, it is robust against unmodeled effects.
This method is one of few examples we know which controls a fast dynamical system at
high frequency (> 100 Hz) without repeating actions or aggregating multiple observations.
However, it is not trained with visual data but with low-dimensional states only and needs
real-world data.

Other methods incorporate domain adaptation to bridge the reality gap, i.e. by including
additional layers during the fine-tuning process [Rus+17], by using efficient model-based
reinforcement learning where the model acts as a prior which is adapted to the unseen
dynamics [FLA16] or by using generative networks to transform synthetic images into more
realistic ones to reduce the number of required real-world images [Bou+18]. Many other
approaches exist for sim-to-real transfer using domain adaptation (i.e. [Hof+18; Chr+16;
Tze+20; CH15]). However, they all have in common that they require additional data of
the target domain making them unfeasible for zero-shot sim-to-real transfer.

3.3.1 Domain Randomization

Domain randomization as a method for sim-to-real transfer and acquiring robustness to
uncertainty, has been gaining momentum in recent time.

DR for visual aspects was introduced by Tobin et al. [Tob+17] by sampling visual
conditions uniformly while learning to detect and to pick-up target objects between
distractor objects. The authors show that with randomization a realistically looking
simulation is not necessary for a successful sim-to-real transfer. Furthermore, the learned
behavior can be robust against unseen situations. A more robust version of visual domain
randomization is used in in the work of Slaoui et al. [Sla+19] by combining DR with
regularization to achieve invariance across different domains.

3.3 sim-to-real & domain randomization 30

In contrast to the randomization of visual aspects, Peng et al. [Pen+18] use dynamics
randomization in conjunction with memory-based policies and a sparse reward function
without carefully calibrating the simulation beforehand to transfer policies from simulation
to the real world. The authors argue that system identification is not necessary in their
case because of the memory-based property of the policy which should infer the system
dynamics by the internal memory. They show that policies which are parameterized with
a LSTM layer and trained with domain/dynamics randomization are indeed better than
policies with simple feed-forward layers only. Furthermore, they demonstrate that recurrent
policies are robust against perturbations in the real environment. But it is unclear if this
applies to vision-based tasks equally as the authors only use low-dimensional states as
input.

Tan et al. [Tan+18] train quadruped robots in simulation to run forwards as fast as
possible and transfer these learned policies to the real world without fine-tuning them. They
determine system identification as an important part to narrow the reality gap. In addition
to improving the fidelity of the simulation, they also try to achieve more robust policies
with the following extensions: Domain randomization, perturbation forces, and a compact
design of the observation space. Tan et al. compare the achieved trajectories with those of
handtuned controllers and discovered that the learned policies are as fast as the handtuned
ones but consume significantly less power. Their results show that a good simulation is
crucial since controllers without the extensions perform poorly in the real world. Seperating
the three methods, they conclude that although domain randomization leads to more robust
controllers the method also leads to supoptimal ones. Similar applies to perturbation forces1

as this method is seen by the authors as some type of domain randomization. Furthermore,
their results reveal that for sim-to-real transfer a large observation space is not beneficial
although it is good in simulation. However, a small observation space might not be available
in every task and visual information might be essential for solving specific tasks. Therefore,
further research on this is still necessary.

Apart from examining the benefit of DR as it is done by Peng et al. [Pen+18] and Tan
et al. [Tan+18], a better parameterization of the randomization distributions has been
receiving much attention in recent time. I.e. real data can be exploited to improve the
parameterization of the randomization distributions. In the work of Ruiz et al. [RSC18],
the algorithm generates a synthetic dataset using a randomized simulation. This dataset is
then used to train a main task model (MTM) such that it achieves maximum accuracy
on the validation set of real-world data. The reward of the MTM on the validation set
is then used to update a policy that sets the parameters of the randomized simulation.
Muratore et al. [Mur+20] combine DR and Bayesian optimization to tune the parameters
of a simulated environment by sampling data from the real-world target environment. Their
goal is to learn a policy that maximizes the return in the real-world by searching over the
space of source domain distribution parameters using Bayesian optimization. But instead
of using high-dimensional images they use the state-space of the system only.

1 In the original paper these are called adversarial attacks [Pin+17].

3.3 sim-to-real & domain randomization 31

Mehta et al. [Meh+20] and Chebotar et al. [Che+19] use a discrepancy measure between
trajectories to teach a model how to adjust the DR parameters. Mehta et al. [Meh+20]
measures the discrepancy between randomized trajectories and a simulated baseline tra-
jectory whereas Chebotar et al. [Che+19] use a weighted discrepancy measure between
randomized trajectories and real-world trajectories for which the current policy is deployed
on the real robot. Those discrepancies are then used to optimize the parameters of the
DR parameter model to minimize the discrepancy in the next step. Even if training with
integrated real-data show robust behaviors, those methods still leave the possibility to
unsafe actions during the real-world deployment. Therefore, more methods for training in
simulation only are still needed.

Learning in-hand manipulation of a cube in simulation only is accomplished in the work
of Andrychowicz et al. [And+19] by randomizing most physical and visual parameters of
the system uniformly during training. The authors conduct an ablation study of important
randomizations (including physics, vision, and noise) and discovere that, although a policy
trained on full randomization converges much slower, it also leads to the best performance
in the real world. Furthermore, the majority of training time is spent making the policy
robust to different physical dynamics whereas other randomizations are less time consuming.
Akkaya et al. [Akk+19] continued the previous work accomplished by Andrychowicz et al.
[And+19]. Instead of manipulating a cube, the task is changed to learn the dexterous part
of solving a Rubik’s cube. They apply the algorithm described in Chapter 2 to generate
a curriculum of growing randomizations. Similar to Peng et al. [Pen+18], Akkaya et al.
[Akk+19] and Andrychowicz et al. [And+19] use memory-based policies to yield robust
and adapting behaviors to different disturbances and occlusions which are not used during
training. Problematically, both methods require a lot of computing power making them
unfeasible for mass usage.

One advantage of simulation is being able to use information that is not available or
difficult to obtain in the real-world. Pinto et al. [Pin+18] use this advantage to train an
actor-critic policy on synthetic depth images which are generated using DR. While the
actor uses images only, the critic additionally exploits the full low-dimensional configuration
of the simulated robot during training in simulation. This is possible as the critic is not
needed anymore after training.

Another approach by Jeong et al. [Jeo+19], which exploit the advantage of information
in simulation, use a state-based agent to train a vision-based agent via behavior cloning and
DR. But instead of using DR alone for the sim-to-real transfer, an additional self-supervised
domain adaptation step is included which needs additional real-world data.

However, most of the described methods lack interpretability. Furthermore, none of those
methods can verify that the learned internal representations transfer to the target domain
successfully beforehand and share no insight during evaluation on why the method might
fail.

3.4 disentangled representations for reinforcement learning 32

3.4 disentangled representations for reinforcement learning

So far, disentangled representations have mostly been used on toy datasets only and
especially without further downstream tasks like RL. In connection with reinforcement
learning there is only a small number of publications.

Higgins et al. [Hig+17b] combine β-VAE with policy learning but split the training
phases. Based on a pre-collected dataset, by using a pre-determined policy, a β-VAE
model is trained on the dataset in a Learn to See phase. In the following Learn to Act
phase, the policy learns by interacting with the environment using the concatenated latent
representations of stacks of frames provided by the freezed β-VAE. The authors evaluate
the proposed agent named DisentAngled Representation Learning Agent (DARLA) on a
simulated benchmark and on a sim-to-real reaching task. In the latter setting, the method
is able to successfully transfer to the real robot. Problematically, the method requires
separated training procedures. Especially the training of the vision modules require already
collected observations from an existing policy that might not be available.

Curious Object-Based seaRch Agent (COBRA) is a model-based RL algorithm utilizing
a vision module, a transition model, an exploration policy and a reward predictor. In an
unsupervised exploration phase the first three components are trained without learning a
task while the reward predictor is learned in the task phase. The vision module uses MoNet
[Bur+19] a disentanglement architecture based on an autoregressive VAE which decomposes
the objects visible in the input frames into disentangled slots. Each slot describes meaningful
properties like color, position, etc. of the object. The union z of those slots represent the
full scene. The transition model predicts the next union zt+1 on the basis of the current
slots zt and action at. The final agent is robust to task-irrelevant perturbations but since
the evaluation only takes place in simulation on simple 2-dimensional environments, it is
not clear if the agent can be used for much more complicated task in a sim-to-real setting.

An attempt to combine policy learning with disentangled representation learning is
the work in Yang et al. [Yan+19]. They extend standard policy learning losses with
additional auxiliary losses to learn an action-conditional VAE jointly with a policy. The
VAE encodes the current observation as normal while the decoder predicts the next
observation conditioned on the action sampled from the policy. The policy predicts the
action on the basis of the mean µ and the standard deviation σ of the encoded Gaussian.
Due to the dependence of the decoder on the current action, the latent traversals shown
indicate that it learns to disentangle environment factors and to predict changes due to the
input action. The method does not utilize synthetic environment changes as incorporated by
DR. Therefore, using this method with DR for a sim-to-real transfer would be interesting.

Wulfmeier et al. [Wul+20] study different representations for simulated robots on the
questions if and how such representations support exploration and overall behavior in (multi-
task) reinforcement learning. The architectures being investigated include Transporters,
MoNet, β-VAE and a standard VAE. They are pretrained similar as DARLA but use
additional proprioceptive robot states as policy input. The authors show that disentangled
models manage to include all relevant information to solve the task quickly while entangled
models fail to achieve this. Furthermore, they argue disentanglement is especially helpful for

3.4 disentangled representations for reinforcement learning 33

auxiliary tasks since those allow the agent to explore the state space more efficiently. They
reveal that representations with a medium and small number of dimensions may shrink the
observability of the task since information get lost during encoding. For representations with
only a few dimensions, entangled models can perform better since those can incorporate
more information into smaller representations.

In another large-scale study, Träuble et al. [Trä+21] investigates if disentangled represen-
tations are helpful for out-of-distribution (OOD) generalization, meaning the generalization
to unknown FoV. All models in the study are pretrained in a completely decoupled manner
like DARLA. They highlight reward is strongly correlated with OOD performance but
disentanglement is not beneficial for sim-to-real transfers. Instead, it would be more useful
to apply input noise.

Combining weakly-supervised disentanglement with demonstration learning was shown to
be useful by Hristov et al. [HR21]. The authors train a robot on a real-world manipulation
task and incorporate weak supervision signals from user inputs in a restricted labeling
setting. For this purpose, the user defines the groups the current trajectory corresponds to.

4
D I S E N TA N G L I N G V I S U A L R E I N F O R C E M E N T L E A R N I N G

W I T H D O M A I N R A N D O M I Z AT I O N

In this chapter the main idea is presented for training disentangled representations jointly
with a RL policy using DR in a curriculum learning setting. First, the general problem
formulation is outlined. Afterwards it is described how little additional information from
the simulation can be used to incorporate weakly-supervised disentanglement which then
can be used to guide the DR process. Due to the curriculum learning setting of DR, the
algorithm is constantly confronted with new randomizations. Without further additions the
algorithm would not be able to learn about these new observations. Therefore, an approach
to handle this is described. Finally, the combination of the individual methods is presented.

4.1 problem formulation

The main goal of this thesis is to introduce a method that is able to learn a disentangled
representation jointly with a reinforcement learning policy. A policy able to disentangle
important FoV should transfer from the source domain to a different target domain from
which we know it differs in an unknown set of FoV from the source domain. Therefore, it
might be appealing to train the agent on a set of source domains with changing FoV and
to let it learn to represent such factors (equal to DR).

To learn such policies the agent faces environments that share the properties already
described in Section 2.2.1, Section 2.3.3 and Section 2.4.3. As defined in Section 2.3.3,
the environment eξ is parametrized by a set of changeable parameters ξ ∈ RD where these
parameters are sampled from a distribution ξ ∼ Pψ with ψ as the parametrizing variables of
the distribution. In standard disentangled representation learning settings this distribution
is generally uniform due to the structure of the possessing dataset. In DR the distribution
is often a combination of fixed Gaussian, uniform or log-uniform distributions. However, in
the setting of this framework it is assumed that the distributions are of fixed type for each
factor but continuously changing variables ψ. Therefore, randomizing the parameters of an
environment has in this setting the identical meaning as changing the factors of variation
of it wherefore DR and changing FoV can be seen as similar transformations.

Except from this parametrization, the environment eξ is defined as normal MDP which
yields observations s ∈ S from a high-dimensional image observation space S ∈ RW×H×C

that describes C-channel images of width W and height H. Rather than learning to solve
the environment directly in this observation space, the policy should utilize the lower-

34

4.2 guiding domain randomization with weak-supervision 35

dimensional representation space Z ∈ RK by jointly learning a mapping gϕ : S → Z
parametrized by ϕ. For this to be possible it is assumed that the associated representation
z ∈ Z is fully observable from an observation s. Furthermore, the representation space
should include a transformation of the factors ξ and additional information about the
environment needed to solve the underlying task. Therefore, the number of dimensions of
the representation K should be larger than the number of overall factors D.

In accordance with the match-pairing setting of Section 2.4.3, two environments eξ1

and eξ2 share a known subset ξI ⊂ ξ of FoV so that the factors can be splitted into this
shared part I and a differing part \I. This is equivalent to ξI ∩ ξ\I = ξ. Observations
s1 and s2 which are now sampled from eξ1 and eξ2 share the same factors ξI . Similar to
Equation 2.55, this alignment constraint imply for the true posterior

p(zi|s1) = p(zi|s2) ∀i ∈ I, (4.1)

p(zi|s1) ̸= p(zi|s2) else. (4.2)

Since the factors of ξ are independent dimensions, each of these dimensions only changes
the corresponding transition probability of the environment so that two environments with
an equal factor ξ1,i = ξ2,i share the same transition probabilities:

T (s′, r|s, a, ξi) = T (s′
1, r|s1, a, ξ1,i)

= T (s′
2, r|s2, a, ξ2,i)

(4.3)

Therefore, the disentanglement of those factors is supposed to help the agent to perceive
and handle the dynamics of the environment. The agent now shall disentangle the factors
ξ using mapping gϕ while it learns to maximize the expected return

J(θ) = Eξ∼Pψ

[
Eπθ,gϕ,τ∼eξ [G(τ)]

]
(4.4)

with policy πθ using inputs from the learned mapping gϕ.

4.2 guiding domain randomization with weak-supervision

Section 2.4.3 of Chapter 2 described that training generative models with weak-supervision
by match-pairing is superior to training those models unsupervised. By using simulations
as source domains, information about factor pairs ξ1,i and ξ2,i between simulation instances
is readily available and thus match-pairing or other forms of weak supervision can be used.

As Akkaya et al. [Akk+19] describe, training with a gradually increasing curriculum
simplifies the training process and eliminates the necessity to tune the DR variables by
hand. It can be assumed that similar statement also holds for disentangled representations.
Furthermore, Akkaya et al. [Akk+19] introduce ADR as a method to guide the domain
randomization parameters based on the performance of the agent so that the training on
randomized environments create a curriculum.

4.2 guiding domain randomization with weak-supervision 36

The main focus of this section is to combine these two ideas. As mentioned in the last
section, the agent should disentangle the domain randomization variables into distinct
dimensions of a representation z from input states s using mapping gϕ. Since the goal is to
learn disentangled representations, this mapping is the encoder qϕ of a VAE. Given shared
factor indices I between two observations s1 and s2, this mapping should be learned with
weak supervision by enforcing Equation 4.1 using an averaging strategy avg(·) between
two encodings:

q̃ϕ(zi|s1) = avg (qϕ(zi|s1), qϕ(zi|s2)) ∀i ∈ I (4.5)

q̃ϕ(zi|s1) = qϕ(zi|s1) else. (4.6)

As before, this applies to s1 and s2 equally. The new encoding q̃ can be used to optimize
the combined β-VAE loss of Equation 2.60. In general, the averaging strategy of [Hos19] is
used in this thesis.

Considering a different perspective, Equation 4.1 can also be used to evaluate the current
disentanglement by evaluating that shared factors between both observations are encoded
identically

qϕ(zi|s1) = qϕ(zi|s2) ∀i ∈ I (4.7)

qϕ(zi|s1) ̸= qϕ(zi|s2) else. (4.8)

This allows to measure disentanglement during training and to guide ADR to adapt its
parameters using a performance metric for each factor ξi of the environment. For a number
of evaluation steps M in which a batch of N paired (s

(1)
1 , s(1)2), . . . , (s(N)

1 , s(N)
2) observations

is sampled from a replay buffer, this metric is given by

performancei =
1
M

M∑
l=1

exp
(
− 1
N

N∑
k=1

∣∣∣qϕ(zi|s(k)1)− qϕ(zi|s
(k)
2)

∣∣∣) ∈ (0, 1]. (4.9)

In this thesis, the difference between the encoders is implemented as the difference between
the means of the distributions. But ither distances are also possible. Based on this metric,
ADR can change its parameters given two performance thresholds tL and tH :

1. performancei ≥ tH : The encoder qϕ learned to disentangle the current factors sufficient
enough, hence the parameters ψi of the DR distribution for the measured dimension
i can be increased.

2. tH > performancei > tL: The disentanglement performance of the encoder qϕ is
acceptable but must be trained further, hence the parameters ψi are neither increased
nor decreased.

3. performancei ≤ tL: The disentanglement performance of the encoder qϕ is not
sufficient enough anymore, hence the parameters ψi are decreased.

In each training step, this adapted ADR algorithm samples two observations s1 and s2 by
generating these with k different factors and n− k unchanged factors between those. Similar

4.3 capacity-based domain randomization 37

to the original ADR algorithm, in each episode the procedure selects a factor dimension
ξi and bounds its value with equal probability to one of its current boundary values (i.e.
the lower value ψLi of the associated uniform distribution U(ψLi ,ψHi)). After generation,
those samples can be used to train the policy and the VAE by adding them to a replay
buffer. Training of the VAE proceeds as described above in a weakly-supervised way. The
evaluation is executed after every T training steps using batches of random samples from
the replay buffer and adapts the current parameters ψj based on the current performance
on disentanglement with predefined update step sizes ∆i.

4.3 capacity-based domain randomization

As described in Section 2.4.3, Burgess et al. [Bur+18] claims that due to the induces
bottleneck pressure of β-VAE, the encoder qϕ learns to encode only this information
that contributes to the log-likelihood sufficient enough. Unfortunately, if the algorithm
is continually confronted with new information, the encoder uses most of its capacity
on information that occurs in earlier training steps while having not enough capacity
left for later information. Therefore, if the DR distributions are changed during training,
distinct factor values that are newly introduced might not be learned at all as the capacity
of the VAE is not sufficient enough anymore. Using an additional increasing target KL
as proposed by Burgess et al. [Bur+18] should help to improve disentanglement during
sequential training as demonstrated in [Ach+18].

Instead of linearly increasing the target KL term C during training it is possible
to condition this term on the current parameterization of the DR distributions as the
distributions provide a quantity on how much information has been added as a result of
the expansion. It is possible to compare the initial DR distribution Pψ0 with the current
DR distributions Pψk using the KL divergence

Cj = DKL(Pψj ∥ Pψ0). (4.10)

Both distributions are identical at the beginning of the training, so that the capacity starts
at 0. As training progresses, the distribution Pψ deviates more and more from the initial
distribution, increasing the capacity. Since the KL divergence is always non-negative, the
capacity will never reach a negative value. This ensures that the representation capacity can
always reach this target value. For the standard unsupervised disentangled representation
learning setting, the loss from Equation 2.54 is thereby adapted to

L(θ,ϕ;x, z,C) = Eqϕ(z|x)[log pθ(x|z)]− γ|DKL(qϕ(z|x)∥ p(z))−DKL(Pψj ∥ Pψ0)︸ ︷︷ ︸
C

|.

(4.11)

4.4 capacity-based weakly-supervised domain randomization 38

Environment

Policy

Simulation
=

=

Figure 4.1: Combining weakly-supervised disentanglement with DR for RL.

4.4 capacity-based weakly-supervised domain randomization

Combining the ideas from the previous Section 4.2 and Section 4.3 yields a new algorithm
that learns distinct randomizations in predefined dimensions of a latent representation
jointly with a RL policy. In general, every algorithm can be used as underlying RL framework
since the main contributions of this thesis affect the extraction of the representation only.
In the on-policy case a few adaptions have to be made as those methods usually do not
utilize a reply buffer which is necessary for the VAE to prevent catastrophic forgetting.
During evaluation SAC is used as RL algorithm to learn the policy.

Using SAC, the framework can be divided into three main stages:

1. In the first stage, the algorithm interacts with the environment generating augmented
transitions (st, at,Rt, st+1) with st = (s′

t, s′′
t , It) using the current policy πθ and the

encoder qϕ of the VAE. During this process the augmented state s′′
t+1 which differs

in k factors from the primary state s′
t+1 and the indices It of the differing factors

are generated. Those transitions are stored in a replay buffer D. After a complete
episode of the environment, new factor values ξ for all factors are sampled from the
DR distribution to parameterize the environment.

2. After a specific number of environment steps (usually 1), policy and VAE parameters
are updated using sampled batches of transitions x from the replay buffer. The policy
is updated as described in Section 2.2.6.1 whereas the VAE is updated using the
weak supervision updates from the previous Section 4.2 and Section 4.3 utilizing the
shared factor indices I between the primary state s′ and the augmented version s′′.
The loss functions for the weakly-supervised training from Equation 2.60 and for the

4.4 capacity-based weakly-supervised domain randomization 39

Algorithm 3 Automatic Domain Randomization with Weakly-Supervised Disentangled
Representations

1: procedure SAC-WACCI

2: D ← ∅ ▷ Initialize empty replay buffer
3: for each iteration do

4: ξ ∼ Pψ
5: for each environment step do

6: µ′
t,σ′2

t ← qϕ(s
′
t)

7: at ∼ πθ(at|µ′
t,σ′2

t)
8: s′

t+1,Rt ← Env(at, ξ)
9: s′′

t+1, It+1 ← GenerateDifference(s′
t+1, k)

10: st+1 = (s′
t+1, s′′

t+1, It+1)
11: D ← D∪ {(st, at,Rt, st+1)}
12: end for

13: for each gradient step do

14: x ∼ D
15: πθ ← UpdatePolicy(πθ,x)
16: pϕ, qϕ ← UpdateVAE(pϕ, qϕ,x)
17: end for

18: if it is time to evaluate then

19: p← EvaluatePerformance(qϕ,ψ,D)
20: ψ ← UpdateDomainRandomizationParameters(p,ψ, tH , tL, ∆)
21: C ← UpdateCapacity(C,ψ)
22: end if

23: end for

24: return Policy πθ, VAE gθ
25: end procedure

unsupervised target capacity training with known distributions from Equation 4.11
can be combined to

Eqϕ(z|s) [log pθ(s′|z)] + Eqϕ(z|s) [log pθ(s′′|z)]

− γ
∣∣∣DKL(qϕ(z|s′)∥ p(z))−DKL(Pψj ∥ Pψ0)

∣∣∣
− γ

∣∣∣DKL(qϕ(z|s′′)∥ p(z))−DKL(Pψj ∥ Pψ0)
∣∣∣ (4.12)

3. If it is time to evaluate after every T training steps, the VAE is evaluated according
to the performance metric described in Section 4.2 by exploiting knowledge from
weak supervision. Based on the defined thresholds tH and tL the parameters of the
DR distributions ψ are adapted using the predefined step size hyperparameter ∆ to
define a simpler, identical or more difficult task through the environment. Due to
the update of those parameters, the capacity target term C of the combined loss
Equation 4.12 is adapted as well.

The procedure is listed in Algorithm 3 and visualized in Figure 4.1. In the following
chapters this method is denoted as Automatic Controlled Capacity Increase (ACCI) VAE.
In combination with a SAC agent it is referred to as SAC-ACCI.

5
E X P E R I M E N TA L R E S U LT S

In this chapter, the proposed method SAC-ACCI is evaluated on a simulated control
task. For this propose, the overall experimental setup including the description of specific
implementation choices is presented. The results of the training as well as the overall
evaluation of the method on the original task (source domain) is discussed. In an additional
experiment, the method is evaluated in a sim-to-sim setup (target domain). Lastly, the
interpretability of the latent representation of the method is examined with three smaller
experiments which investigate different parts of the VAE.

5.1 experimental setup

Before the overall results are described, the training and evaluation task is outlined and
the different network architectures, hyperparameters and preprocessing steps are described.
Specifically, SAC algorithm as RL objective was used coupled with the proposed ACCI
framework. The implementation is build on top of the publicly released implementation
from [Yar+21]. The training of the agents and all experiments were performed on a compute
cluster with 96 CPU cores and 8 NVIDIA Tesla V100 GPUs.

5.1.1 Environment

As experimental and evaluation platform, the cart-pole swing-up (CPSU) scenario, a
standard continuous control task, is used. It is based on the MuJoCo [TET12] physics
engine integrated in the OpenAI Gym [Bro+16] framework. The task objective is to control
the position of a cart on a rail to swing-up and balance a hinged pole in an upright position
while this pole starts downwards at the beginning of each episode. The cart is controlled
by setting the single-valued torque of an attached direct-drive motor. The action-space
of the environment is therefore A ∈ R but limited to values inside [−3, 3]. The standard
state-space consists of the position and velocity of the cart and the angle between the
horizontal and the pole as well as the angular-velocity of the pole. In this setting however,
each state is a high-dimensional pixel-observation S ∈ RW×H×C of the scene neglecting
the original state. As the true state is not fully-observable with a single image (i.e. the
velocities), the algorithm observes a small history in each step consisting of the last K
observations by stacking a set of K frames together resulting in S ∈ RW×H×C·K . The

40

5.1 experimental setup 41

reward is obtained by taking the cosine from the angle of the pole to the horizontal. During
training, each episode consists of 250 timesteps ensuring that the balancing part does not
consume the majority of the time later in the training as the swing-up part is usually short
in time.

Figure 5.1: Visualization of the original environment (left hand side) and comparison of different
randomizations (right hand side).

5.1.2 Training Setup & Hyperparameters

Using the simulation and a framework that allows to change specific simulation parameters,
a DR study is performed by randomizing the five parameters in Table 5.1 during training
and evaluation (similar to the evaluation of DARLA). Six policies are trained on different
random seeds using SAC-ACCI for 1, 000, 000 training steps.

For the domain randomization, all lower and upper bounds were selected so that a policy
with all randomizations is able to converge to a good performance level. The lower and the
upper bound of the camera properties were chosen to be physical reasonable and also not
too difficult during training.

To be able to compare the proposed methods to other methods, additional baseline
policies were trained. For the quantitative comparison, the SAC-AE algorithm proposed by
Yarats et al. [Yar+21] is used. All methods build upon this implementation. Furthermore,
an adapted version of the same method using a VAE instead of an AE is also used. As in
Yarats et al. [Yar+21], the convolutional layers of the encoder of these methods receive
gradients from the representation learning and the critic. The fully-connected layers of the
encoder additionally receive gradients from the actor. For additional qualitative experiments,
DARLA was utilized by training a VAE on a pre-collected dataset in which states are
similar distributed as in a joint training run in order to make the results comparable. The
dataset for pre-training the vision module of DARLA was collected by a state-based SAC.
The trained VAE was then used to train a SAC algorithm on the actual task with the same

5.1 experimental setup 42

number of steps as the other methods. This implementation from the DARLA algorithm
deviates from the original, as the original uses the sampled latent state z as policy input
and uses other RL algorithms as SAC. In this thesis, the outputs µ and σ2 of the posterior
itself are used instead, as using those values does stabilize the policy learning. This is
reasonable since the latent state z is always a result of randomness due to the sampling
process. Identically to Yarats et al. [Yar+21], each algorithm first collects 1000 observations
using a random policy at the beginning of the training and afterwards collects observations
by sampling actions from the current policy. The encoder of DARLA and SAC-ACCI only
receive gradients during the representation learning phase and does not share gradients
with the actor and critic during policy learning.

For all methods, two architectures are used:

• The VAE architecture for the main method consists of an encoder of four convolutional
layers identically to the architecture used by Higgins et al. [Hig+17b], each with
kernel size 4, and stride 2 in the height and width dimensions. The number of
filters for the first two layers is 32 and 64 for the following two, respectively. The
convolutional layers are followed by a fully connected layer of size 256 units. In between

Category Parameter Dist. Type Values

Nominal Mean Std. Dev.

Camera

Position N Additive
0 0 0.01
−3 0 0.01
0 0 0.01

Angle N Additive
90◦ 0 0.573◦

0◦ 0 0.573◦

0◦ 0 0.573◦

Nominal Lower

Bound

Upper

Bound

RGB

Rail U Replace
77 0 255
77 0 255
179 0 255

Cart U Replace
179 0 255
179 0 255
0 0 255

Pole U Replace
0 0 255
179 0 255
179 0 255

Table 5.1: Parameters for DR in the MuJoCo simulation environment. N describes a Gaussian
distribution with mean and standard deviation whereas U describes uniform distributed
values with lower and upper bound. The nominal parameter values of the original
environment can be completely replaced by the new randomized values (type Replace) or
are added on top of them (type Additive).

5.1 experimental setup 43

Method Architecture Shared Gradients Framestack Decoder β/γ
SAC-AE [Yar+21] [Yar+21] Yes Collective MSE −
SAC-VAE [Yar+21] [Yar+21] Yes Collective MSE 1
SAC-VAE [Yar+21] [Yar+21] Yes Collective MSE 4
SAC-VAE [Yar+21] [Yar+21] Yes Collective MSE 16
DARLA [Hig+17b] [Hig+17b] No Separate Bernoulli 4
SAC-ACCI [Yar+21] No Collective MSE 100
SAC-ACCI [Yar+21] No Collective Bernoulli 100
SAC-ACCI [Hig+17b] No Separate Bernoulli 100
SAC-ACCI [Hig+17b] No Separate Bernoulli 500

Table 5.2: All trained agents used for evaluation. The first five rows show the agents that are used
as baselines. The last four rows show the settings of different SAC-ACCI agents. The
column Architecture indicates the VAE architecture used while Shared Gradients lines
out if gradients of the critic are used to update the encoder as proposed by Yarats et al.
[Yar+21]. A stack of frames can be processed in a single pass by the encoder (Collective)
whereas in the Separate case each frame is computed individually and the result is
stacked afterwards. To optimize the reconstruction accuracy either a MSE-Loss or a
Bernoulli-Loss (BCE-Loss) can be used. The last column shows the value used for the
hyperparameters β or γ.

ReLU activations are used. The latent layer comprises 128 units parametrizing 64
independent Gaussian distributions. Smaller sizes like 64 units as used in the DARLA
algorithm or 10 units as used in standard disentanglement settings were empirically
found not to be sufficient enough meaning that some agents were not able to learn to
solve the task. Therefore, to make the different methods comparable, the standard
number of units is 128 in the latent layer.

• The other architecture is identical to the one of Yarats et al. [Yar+21]. It also consists
of an encoder with four convolutional layers, each with kernel size 3 but without
stride except for the first layer which has stride 2. The number of filters for each layer
is constantly 32. The output of the last convolutional layer directly serves as input
for the last fully-connected layer. Latter compromises 128 units as in the architecture
described first.

In both cases, the decoder architecture is simply the reverse of the encoder, utilizing
deconvolutional layers. The adjustable hyperparameters β and γ where chosen according
to recent literature on disentangled representations [Hig+17b; Bur+18; Ach+18; Dit+20;
Trä+21].

Furthermore, two processing procedures are used for the input stack of frames: In
the first procedure the stack of K frames is passed to the encoder without additional
modifications forming a single input for the policy network (Collective). In the second case,
each observation frame is passed to the encoder individually forming an single encoder
output for each frame. These individual outputs are concatenated together again afterwards
to form a K-dimensional input to the policy network (Seperate).

5.2 source domain evaluation 44

0.0 0.2 0.4 0.6 0.8 1.0
Step (1e6)

200

100

0

100

200
R

et
ur

n

Method
SAC:STATES
SAC:AE
SAC:VAE - : 1
SAC:VAE - : 4
SAC:VAE - : 16
SAC:VAE - : 32
SAC:DARLA - : 4
SAC:ACCI - : 100
SAC:ACCI - : 500

Figure 5.2: Evaluation of average episode return over 10 evaluation steps after every 10000 environ-
ment steps. The SAC-ACCI agents are the last two of Table Table 5.2.

Both actor and critic of the SAC agent receive the output from the encoder network
as input and pre-process it with layer normalization [BKH16]. The result is then further
processed by three fully-connected layers with 1024 hidden units and ReLU activations
in between. The critic uses double Q-learning as described in Section 2.2. The output
of the actor parameterizes a Gaussian distribution with mean and variance. Further
hyperparameters of SAC can be found in Table 5.3 and are taken from Yarats et al.
[Yar+21]. These hyperparameters were not optimized as this is out of the scope of this
thesis. As described in Chapter 4, the ACCI framework needs additional hyperparameters
to update the capacity term C and the DR distributions. The used values are shown in
Table 5.4.

During training it was noticed that a mistake was made in the implementation. The
original implementation by Yarats et al. [Yar+21] uses individual AE encoders for the actor
as well as for the critic. However, both encoders share the weights for the convolutional
layers but not for the latter fully-connected layers. The encoder of the critic is used for
the reconstructions. Since the encoder of the actor is never updated by gradients from
the actor, the fully-connected layers are never updated at all. However, all agents were
still able to train successfully, since these layers only represent a non-linear transformation
which is compensated by the subsequent layers in the actor.

5.2 source domain evaluation

During training, each agent is evaluated after every 10, 000 environment steps by computing
the average episode return over 10 evaluation episodes. Instead of sampling from the
Gaussian policy of SAC the mean of the Gaussian is taken during evaluation. This evaluation
is shown in Figure 5.2. For comparison, a SAC agent based on the original states was
included to show an upper bound for the pixel-based methods. The SAC-AE version of
Yarats et al. [Yar+21] performs best on the high-dimensional pixel observation space

5.2 source domain evaluation 45

Parameter Value
Replay buffer capacity 500, 000
Batch size 128
Discount γ 0.99
Optimizer Adam
Actor learning rate 10−3

Actor update frequency 2
Actor log std.-dev. bounds [−10, 2]
Critic learning rate 10−3

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.01
Critic encoder soft-update rate τenc 0.05
Autoencoder learning rate 10−3

Temperature learning rate 10−4

Temperature Adam’s β1 0.5
Init temperature 0.1

Table 5.3: A complete overview of used hyperparameters.

Parameter Value
Number of differences k 1
Evaluation Offset T 10, 000
Evaluation Steps M 1, 500
Discount γ 0.99
Thresholds tL, tH (0.8, 0.975)
Step size ∆Cam 0.0003
Step size ∆RGB 0.0075
Init. distribution P

(Cam)
ψ0

N (0.00, 0.001)
Init. distribution P

(RGB)
ψ0

U(115, 166)

Table 5.4: A complete overview of used hyperparameters for the ACCI algorithm.

5.2 source domain evaluation 46

0.0 0.2 0.4 0.6 0.8 1.0
Step (1e6)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Avg. Performance

0.0 0.2 0.4 0.6 0.8 1.0
Step (1e6)

0

5

10

15

20

25

30

Algorithm Capacity

100
500

Figure 5.3: Average performance of the VAE and capacity change during training for γ ∈ {100, 500}.

while all other methods using VAEs perform worse. Nevertheless, all methods manage to
successfully perform the task but with varying degrees of stability. As Yarats et al. [Yar+21]
already concluded, methods using VAEs perform worse due to the stochastic nature of
generative models. Additionally, a stronger pressure on the bottleneck destabilizes and
slows down the overall learning process. Due to the higher pressure, a greater adaptation
in the structure of the latent bottleneck takes place during training. As a result, actor and
critic have to adjust to these adapted inputs. This is especially the case for SAC-ACCI
with high bottleneck pressure. The high pressure slows down learning of a sufficient policy.

5.2.1 Encoding Performance

Additional to the performance on the control task, the encoding performance measured by
Equation 4.9 and capacity of the SAC-ACCI algorithm was tracked and is both shown in
Figure 5.3 for γ ∈ {100, 500}. During the course of training the average performance of
the weakly-supervised VAE degrades over time but remains at an acceptable level. The
hypothesis why the performance is significantly better at the beginning than at later stages
of the process is that the encoder network is initialized with small weights causing similar
representations at the beginning. Over the course of training with an increasing range of
possible factor values, it gets more difficult to distinguish between those factors causing a
worse performance. But a stronger pressure on the bottleneck (greater γ) helps to keep
performance at a very high level, resulting in an expectation for better disentanglement of
factors. As the performance never falls below the upper threshold tH in both cases, the
capacity increases continuously until it reaches it maximum value of this environment.

5.2 source domain evaluation 47

0.0 0.2 0.4 0.6 0.8 1.0
Step (1e6)

0.92

0.94

0.96

0.98

1.00

Avg. Performance

0.0 0.2 0.4 0.6 0.8 1.0
Step (1e6)

0

5

10

15

20

25

30

Algorithm Capacity

Architecture|Framestack|Decoder

Yarats|Collective|MSE

Yarats|Collective|Bernoulli

Higgins|Separate|Bernoulli

Figure 5.4: Average performance of the VAE and capacity change during training for different
parameter settings but all with hyperparameter γ = 100.

In Figure 5.4 the same evaluation but for different algorithm settings is shown. Using a
different network architecture than Higgins et al. [Hig+17b] while additionally processing
the stack of frames in a single pass does significantly hurt the encoding performance. In
both of these settings the encoder is not able to keep the performance above the threshold
tH , resulting in randomized training environments without increasing difficulty as the
distributions are not updated anymore until the threshold tH is passed again. In both
cases this is not the case, as the performance settles below the threshold value. Since the
distribution parameters are not updated anymore, the capacity also settles to an inferior
value significantly below the maximum value. This may have several reasons: Separating the
framestack into individual frames for the VAE helps especially in the weakly-supervised case
as the provided indices of the stack are splitted likewise. Before, the encoder and decoder
have to process a stack of frames in a single pass in which each state has an individual factor
change. In this case, it is more challenging to learn to distinguish the changes based on the
stack of multiple indices as not each of them are applicable to each state of the stack. If the
stack is splitted into individual observations each with corresponding individual indices, it
is naturally simpler to infer the change in the observations as the optimization is carried
out for each frame individually. Furthermore, the network architecture proposed by Yarats
et al. [Yar+21] is smaller, especially in the convolutional structure in comparison to the
structure of Higgins et al. [Hig+17b]. This might lead to an insufficient learning capacity
to learn the environment factors. Additionally, this architecture utilizes non-linearities on
the latent, restricting the possible structure in the latent imposed by the adapted ELBO.

5.3 simulation-to-simulation experiments 48

Figure 5.5: Visualization of the original environment in MuJoCo (left) and the corresponding
environment in PyBullet (right).

5.3 simulation-to-simulation experiments

In order to investigate the transfer performance of the agents without having access to a
real world counterpart, an additional environment based on the PyBullet [CB21] physics
engine is used similar to the evaluation of Yu et al. [YLT19]. Such an transfer experiment

SA
C

:A
E

SA
C

:V
AE

 -
: 1

SA
C

:V
AE

 -
: 4

SA
C

:V
AE

 -
: 1

6

SA
C

:D
AR

LA
 -

: 4

SA
C

:A
C

C
I -

: 1

00

SA
C

:A
C

C
I -

: 5

00

Method

0

50

100

150

200

R
et

ur
n

Seed
1010
3110
5352
6131
8874
9048

Figure 5.6: Average return of all trained agents on a dynamically equivalent PyBullet environment
of the CPSU task. The agents are sorted according to their random seed. The SAC-
ACCI agents outperforms most of the other environments especially those without
disentanglement.

5.4 latent state interpretability 49

should simulate a resembling distributional shift as a simulation to reality transfer. This
additional target environment shares the same differential equations as the original MuJoCo
task but due to different implementation assumptions of the engine both simulations might
behave different. In addition, both simulations differ especially in their rendering making
this PyBullet environment a suitable transfer objective in this setting (see Figure 5.5). In
recent literature this type of performance is referred to as OOD generalization [Dit+20;
Trä+21] as the observed frames and their internal characteristics are not seen before during
training. Thus, the generated data is distributionally different from the source training
environment.

Each trained agent is deployed in this environment for 150 episodes. The episode return
is measured and averaged across all episodes of each agent. As can be seen in Figure 5.6, the
SAC-ACCI outperforms most of the other baselines with regard to robustness to the choice
of random seed. Most baselines are able to find a sufficient policy that can be transferred
to the target domain but with specific random seeds only. This observation leads to the
hypothesis that these algorithms rely more on the choice of random seed than on the
actual implementation. SAC-ACCI transfers to the target domain reliably without being
heavily dependent on the random seed. The results of Figure 5.6 indicate that a higher
pressure on the bottleneck leads to more robust agents as the average return correlates
with disentanglement hyperparameters β and γ. Despite different results regarding OOD
generalization by Dittadi et al. [Dit+20] and Träuble et al. [Trä+21], a higher pressure
correlates with OOD generalization in this case. The main difference between the results of
this thesis and Träuble et al. [Trä+21] is the joint training of VAE and SAC. Additionally,
Träuble et al. [Trä+21] utilize proprioceptive robot states as policy input in addition to
the generated representation.

5.4 latent state interpretability

Disentangled representations shall encode the hidden FoV of the environment in distinct
latent units. As those hidden factors are usually defined as concrete human-readable
concepts, the learned representations should be similarly interpretable. To observe what
each part of the generative model actually learns, three experiments are conducted on
a small number of agents mainly of the proposed SAC-ACCI method. Especially, the
SAC-ACCI agents with γ = 500 are used for the investigations as it is expected that this
agents should be able to disentangle the factors best. First latent traversals as described in
Section 2.4.3 are created using the trained agents. In the following experiment, embeddings
from the latent representations are generated using the principal component analysis (PCA)
method. The last experiment investigates the attribution of regions of the input image to
the disentangling latents of the representation.

Each experiment uses agents able to transfer to the target environment from the previous
section thus ensuring that the representation is also able to generalize to distributional
shifts. Images are created with a modified version of disentanglement_lib [Loc+19].

5.4 latent state interpretability 50

Encoder Decoder

Attribution Latent Traversals

PCA

Figure 5.7: Experiments to measure interpretability of the generative model.

5.4.1 Latent Traversals

Creating traversals of individual latents is twofold: By changing individual latents, they
reveal the structure of the learned distribution. Moreover, they also show what the decoder
has learned, based on the latent representation. Therefore, latent traversals allow to analyze
the process from the latent representation to the actual reconstruction. Each traversal
is generated by traversing the latent representation in range [−3, 3] in steps of size 0.5.
Therefore, each traversal yields 7 reconstructions.

Traversals for SAC-ACCI are shown in Figure 5.8 and Figure 5.9. The first five latents
correspond to those that shall disentangled the factors imposed by weak supervision,
respectively the camera settings in the first two latents and the RGB values of the objects
in the third to fifth latent. As can be seen in the figures, both camera factors are instead
encoded in the second latent only. This indicates that the factor representation is compact
but not modular as two factor values are encoded in a single dimension of the representation.
Moving the camera or changing its angle produces similar output images, making it difficult
for the encoder to distinguish between both factors. If additional pressure is applied to the
representation, it seams to be easier for the encoder to encode both factors into a single
latent.

Additionally, all decoders learned to ignore color values by simply predicting grey color
values instead of the true value. On the one hand this indicates good generalization across
a variety of color changes. If the encoding is invariant to color, the underlying policy does
not perceive any information about color at all. This results in a desired behavior if color
is irrelevant for the task. However, the main reason the color is not reconstructed might be
the small effect of it on the log-likelihood. The cost of reconstructing the colors is higher
than simply ignoring them. Tasks that require knowledge about the color can therefore not
be learned if the encoder does not encode these factors. With this experiment, however,

5.4 latent state interpretability 51

Camera RGB Position

Figure 5.8: Latent traversal of SAC-ACCI with γ = 100.

Camera RGB Position

Figure 5.9: Latent traversal of SAC-ACCI with γ = 500.

5.4 latent state interpretability 52

Pole dynamics

Figure 5.10: Latent traversals of latent variable z51 of SAC-ACCI with γ = 500 for different input
images.

it remains unknown whether the encoder does not encode these values or whether the
decoder does not consider these factors for a reconstruction.

The residual latents z10, z39 and z51 of the SAC-ACCI agent with parameter γ = 500
learn cart position and pole angle mixed in different latents. While latent z10 learns about
the distribution of the cart and the pole, latent z39 learns mostly about the pole itself.
However, the representation of the pole of latent z39 is non-linear since the reconstruction
is not continuous between the fifth and the sixth traversal image. Traversing latent z51

clearly shows that the module learned to distinguish the dynamics of the pole while the
cart dynamics does not change throughout the traversal, as can be seen in Figure 5.10.

Furthermore, the camera movements and pendulum dynamics are separated in the
modules. In the case γ = 100 (Figure 5.8) the results are similar to the case γ = 500. In
particular, the camera parameters are represented nearly equally. Since these are explicitly
learned through weak supervision, high bottleneck pressure parameters like γ ≥ 100 are
not needed to disentangle these factors, as Locatello et al. [Loc+20] already observed.
Therefore, the weak supervision signal alone is sufficient. However, this is different for the
position factors that are not explicitly learned. In the γ = 100 case, the decoding for these
factors is less precise and not as explicit as in the γ = 500 case.

For comparison purposes, similar traversals for the entangled SAC-VAE agent with
β = 1 and for the DARLA agent with β = 4 are shown in Figure 5.11 and Figure 5.121.
Comparing these traversals with those of SAC-ACCI shows the better disentanglement of
the proposed method to prior methods.

1 Additional latent traversals can be found in Appendix A.1

5.4 latent state interpretability 53

Figure 5.11: Latent traversals of the entangled SAC-VAE with β = 1.

Figure 5.12: Latent traversal of SAC-DARLA with β = 4.

5.4 latent state interpretability 54

5.4.2 Embeddings of Encodings

Instead of examining the decoder and its results with specific adapted representations,
the representation itself can also be examined directly. By reducing the dimensionality
of the representation even further it may possible to uncover learned factors in the
representations which are not used by the decoder. The goal of this experiment is to find
FoV that are encoded in the representation but not processed by the decoder. Therefore,
the representation is investigated directly. For this purpose, representations calculated from
30000 input frames are encoded and transformed into embeddings using the dimensionality
reduction technique PCA.

5.4.2.1 PCA

The principal component analysis (PCA) method is a dimensionality reduction technique
which is most often used for data compression, feature extraction and data visualization
[Bis06, p. 561]. For a better understanding of the sections results, the following summary
of PCA should give an short introduction into this technique: Given data X, PCA tries to
find a orthogonal projection M of X onto a lower dimensional linear subspace Y (principal
subspace) that maximizes the variance of the projected data such that Y = XM . This is
achieved by maximizing the functional trace

(
MT cov(X)M

)
. The solution of a PCA is

the solution to the eigenproblem

cov(X)M = λM . (5.1)

The result is a linear mapping consisting of d principal eigenvectors of the covariance
matrix cov(X) with principal eigenvalues λ. In a probabilistic sense, PCA can also be
defined as the maximum likelihood solution of a probabilistic latent variable model

X = WH + b+ σz (5.2)

with d-dimensional Gaussian latent variable H and a noise process z ∼ N (z; 0, I). The
underlying FoV are primarily responsible for the variance in the data. Therefore, due to
the maximization of the variance in PCA, the orthogonal projection should uncover the
FoV. [Bis06; VPV+09; GBC16]

As PCA tries to find explanatory factors (FoV) in the data [GBC16, p. 479] it is similar
to VAEs. Under the assumption that the representation of a VAE encodes these explanatory
factors fully (as in the disentanglement setting), it can be further assumed that the principal
components of a PCA applied on this VAE representation align with the encoded factors.
I.e. given n FoV that are encoded by an VAE with a m-dimensional latent representation,
the principal components of the encoding should equally align to those factors. In the
CPSU setting of this experiment each observation consists of 7 FoV including camera
position, camera angle, RGB values of the bodies, cart position and pendulum angle. The
learned representation should be able to fully describe these factors. This in turn makes it
possible to reduce the representation to 7 principal components.

5.4 latent state interpretability 55

Pr
in

ci
pa

l C
om

po
ne

nt
 5

Principal Component 1

a

b
c

d

Figure 5.13: Visualization of principal components 1 and 5 of a PCA of the representation of an
SAC-ACCI agent.

The PCA technique is applied to the mean values of the latent representation of the
input data. Figure 5.13 shows the relationship between all principal components2. By
defining the principal space to be 7-dimensional, 99.82% of the variance in the data is
explained by all 7 principal components. By visually examining the states associated with
the embedding points, the characteristics of the principal components can be studied in
more detail. I.e. if the corresponding input frames of the representations are linked with
the embedding of the PCA, a structured subspace is uncovered for components 1 and 5.
As can be seen in Figure 5.13, principal component 1 describes the dynamics of the CPSU
task ranging from states with a high reward in which the pendulum is stabilized (a) to
states with low rewards in which the pendulum hangs downwards (b). In Figure 5.13 this
applies for the whole horizontal axis. The embedding is color coded by the predicted state
values of the critic for the corresponding observation. Red colors indicate a high possible
return while green and blue colors predict a low return as it is described by the bar at
the side of the picture. Principal component 5 on the other hand describes the possible
camera changes in the images (c and d). Following the vertical axis, the rotation of the
camera gradually changes consistently. The results indicate that PCA reveals the same
representation dimensions for these combined FoV that were already revealed by the last
experiment. Other FoV were not found to be aligning to principal components. Especially,

2 Additional PCA clusters can be found in Appendix A.2

5.4 latent state interpretability 56

PC 1 PC 2 PC 7PC 6PC 5PC 4PC 3

PC
 1

PC
 2

PC
 7

PC
 6

PC
 5

PC
 4

PC
 3

Figure 5.14: Visualization of the relationship between all 7 principal components of the representa-
tion of the mainly investigated SAC-ACCI agent. Especially, principal components 1,
4 and 5 span a plane in their shared subspace. While principal components 1 and 5
are meaningful as they describe the dynamics and camera variations, there is no direct
evidence of a interpretable connection between principal component 4 and the FoV.

5.4 latent state interpretability 57

Original

Camera RGB Position

Figure 5.15: Saliency maps (top row) and Grad-Cam images (bottom row) for different latent di-
mensions of the main SAC-ACCI agent. The investigated latent dimensions correspond
to those of the previous experiments. For both methods it can be seen that the agent
mainly pays attention to the cart and the pendulum.

no pattern could be found in the subspace that describes the color of the cart, pendulum
or rail, reinforcing the assumption of the last section that information about color is not
encoded at all in this setting.

5.4.3 Attribution

So far, the experiments mainly focused on the decoder and the representation itself, but
less on the encoder. However, since the encoder generates the representation and thus
contributes to a large extent to the disentanglement, it should be examined as well. To
analyze the importance of the input, methods like Saliency [SVZ14], Integrated Gradients
[STY17] or Grad-Cam [Sel+17] can be used. Based on exemplary inputs, these methods
seek to quantify the extent to which regions of a neural network are responsible for the
output. In other words they are looking for parts which contribute to the output. [Anc+18]

For this experiment Saliency as well as Grad-Cam are utilized. The error between the
total approximated and the true integrated gradients was too large in the Integrated
Gradients methods. Therfore, this method was excluded for the experiment. These methods
can be summarized as follows: Saliency maps show attribution values which are simply
the absolute value of the partial derivative of the specified target output with respect to
the input. Grad-Cam on the other hand is specialized on convolutional neural networks.
Similar to Saliency, the gradients of the target outputs are calculated but with respect to a
specified target convolutional layer. The gradients are then averaged over the channels of
the layer. Afterwards, the result is multiplied with the layer activations computed in the
forward pass beforehand. Both methods require a specified target output that is usually a
class of interest in the classification layer of the network. In the context of this work, the
values of interest are the latent dimensions of the bottleneck representation. Therefore, the
algorithms are provided with specific latent dimensions as target outputs in the experiment.
All visualizations are generated using Captum [Kok+20].

5.4 latent state interpretability 58

Figure 5.15 shows Grad-Cam results and Saliency maps for different latent dimensions
that were investigated in the previous experiments already3. For Grad-Cam the penulti-
mate convolutional layer is used for calculation of the gradients. Each of the individual
investigations uses the same input frame, describing a state shortly after the beginning of
an episode. For both methods it can be seen that the encoder mainly pays attention to
the cart and the pendulum. This is plausible since the movement of both causes the most
variation in the data. It is challenging to distinguish between the different Saliency maps
as they remain mostly unchanged between the latent dimensions. However, the Grad-Cam
images additionally show that for other latent dimensions, the encoder apparently looks at
the residual area. Since this region remains mostly unchanged but still forms a large part
of the image, it is likely that the encoder focuses on this area to reduce the log-likelihood
objective. Due to the constant values in this area it might be possible for the VAE to
encode this information in a small number of latent dimensions only. Focusing on this large
area could also help to reconstruct the area of the pendulum and the rail more easily. The
information provided by the saliency maps and Grad-Cam images does not assist in the
interpretation of the disentanglement, as no dimension of the Grad-Cam images indicates
that special attention is paid to any particular factor. Due to the similarity of the Saliency
maps, no direct attention to specific factors is visible either. This conclusion is also the
case for the weakly-supervised dimensions.

3 Additional visualizations of attribution can be found in Appendix A.3

6
C O N C L U S I O N & O U T L O O K

DR has received much attention in recent years as a general method for transferring RL
policies from a source domain to a different target domain, especially from simulations to
the real-world. Many algorithmic advances have been claimed and DR is often used besides
other extensions in robotic literature. On the other hand, the representations of agents
trained with DR are barely interpretable. However, interpretability would help robotic
agents in the transfer from the source domain to a different target domain, especially if the
agent fails. The interpretable components would indicate the reason for the agent’s failure.

Disentangled representations, on the other hand, attempt to capture the FoV in the
data and are therefore readily interpretable. Previously, there have been few attempts
only which combine RL and disentangled representations. However, these attempts mostly
consider the two learning tasks in isolation from each other. Beyond that, a reference to
DR is not established.

This thesis tackled the problem of learning control policies and disentangled representa-
tions jointly in the context of DR. Due to the similarities in the generative factors between
domain randomization and disentangled representation learning, both methods were com-
bined to obtain policies that generalize to different domains. Furthermore, recent literature
on DR suggest to train policies on a curriculum instead of static DR distributions. In this
case, the performance of the policy is used to adapt the parameters of the distributions.
This idea was transferred to disentangled representation learning by building a framework
that is able to train RL policies jointly with disentangling VAEs purely on images. Instead
of using the policy performance on the task, the disentanglement performance of the
encoder was used to adapt the parameters of the distributions. However, measuring the
disentanglement performance of encoders is usually not trivial since the real-world FoV
are not measurable without further supervision. In this case, the additional information
provided by the simulation was used to incorporate weak supervision. On the one hand,
weakly-supervised disentanglement enforces stronger disentanglement and on the other
hand makes it also measurable. However, the encoder utilizes its capacity early in the
training, which means that no capacity is left for novel factor values later during training.
To this end, a controlled increase of the capacity based on the current DR distribution was
used to ensure learning of factors also later during training.

The performance of the proposed method was benchmarked on a simulated CPSU task
against different baselines. It was shown that the proposed method learns robust policies
while maintaining a high level in disentanglement performance. But this depended largely on

59

6.1 future investigations & ideas 60

the preprocessing strategy and the chosen network architecture. An additional simulation-
to-simulation experiment for the same task in another physics engine demonstrated the
power of the proposed method. The policies were able to solve the task even under this
distributional shift in the observation space. Experiments on the interpretability of the
learned representation showed that even with weak supervision not all factors can be
learned and further methods have to consider especially those factors which are not as
relevant as other factors for the reconstruction loss of the VAE. However, some of the
factors can be learned much more disentangled using weak-supervision.

6.1 future investigations & ideas

This section presents additional ideas that could not be investigated in this thesis and
remain open problems which could be interesting for future work:

• The evaluation was performed on the source domain and an target domain consisting
of an additional simulation environment based on the PyBullet physics engine. As
the ultimate goal would be to transfer the method from the source domain to the
real-world correspondence, as it is usually the case in the DR setting. Applying
the method on real-world observations and collecting reconstructions would help
identifying real-world factors that are not learned sufficient enough making the
method especially interpretable in this setting.

• To ensure that the state is fully observable, the agent is provided with a stack of states
in each step. The main method splits this stack for the VAE so that it processes the
single frames individually. The resulting representations are concatenated together
again to be provided to the policy which requires fully observable states. Another
approach would be to include a recurrent network architecture either already in the
encoder or in the policy. To this end, frame stacking would be unnecessary as the
short-term history is provided by the hidden recurrent state.

• Currently, only visual parameters of the environment are randomized. However, this
reflects only half of the sim-to-real gap. In addition, dynamics parameters should be
randomized. In the weak-supervision setting of this thesis this imposes a problem
for the generation of the differing image pairs because this would require two synced
simulations since actions on the individual environments would result in different
states due to the different dynamics. In the long term the simulation states would be
such different that the assumptions implied by weak supervision would not apply
anymore. Furthermore, it must be ensured that changing parameters at any step
in time does not change the stability of the simulation. An approach would be to
randomized these parameters for each episode and by optimizing the agent based on
episodes in contrast to steps.

• The proposed method SAC-ACCI reconstructs the current observation st to use the
resulting bottleneck representation as input for a model-free policy. In contrast, it
would also be possible to adapt the method for a model-based approach by predicting

6.1 future investigations & ideas 61

the next observation st+1. In this case this would also incorporate predicting future
dynamics since future observations st+1 could be different for different dynamics
parameters allowing to randomize these parameters additional to the current one.

• The evaluation compares SAC-ACCI with other but also similar methods. Therefore,
there is a lack of comparisons with methods that do not use VAEs. Such a larger
study could included algorithms already listed in Chapter 3.

• Disentanglement could be advanced by incorporating inductive biases via additional
structure in the representation. Similar to Toth et al. [Tot+20] the representation
could be structured by differential equations like the equations of motion. Learning
such structures would certainly improve the interpretability of the method.

• To investigate the interpretability of the representations, further experiments have to
be executed. Ablation studies on the representation similar to Meyes et al. [Mey+19;
MSM20] and Morcos et al. [Mor+18] should be performed to investigate the perfor-
mance and dependency of the RL policy. In particular, the disentanglement of these
representations could be tested with such experiments, as ablations of individual
dimensions could expose the interdependence of the different dimensions.

B I B L I O G R A P H Y

[Ach+18] Alessandro Achille et al. “Life-Long Disentangled Representation Learning
with Cross-Domain Latent Homologies.” In: Advances in Neural Informa-
tion Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Asso-
ciates, Inc., 2018. url: https : / / proceedings . neurips . cc / paper / 2018 /

file/a0afdf1ac166b8652ffe9dee6eac779e-Paper.pdf.

[Akk+19] Ilge Akkaya et al. “Solving rubik’s cube with a robot hand.” In: arXiv preprint
arXiv:1910.07113 (2019).

[Anc+18] Marco Ancona et al. “Towards better understanding of gradient-based attri-
bution methods for Deep Neural Networks.” In: International Conference on
Learning Representations. 2018. url: https://openreview.net/forum?id=

Sy21R9JAW.

[And+19] OpenAI: Marcin Andrychowicz et al. “Learning dexterous in-hand manipula-
tion.” In: The International Journal of Robotics Research 39.1 (Nov. 2019),
pp. 3–20. doi: 10.1177/0278364919887447.

[Asi64] Isaac Asimov. Visit to the World’s Fair of 2014. Accessed: 2010-10-04. Aug.
1964. url: https://archive.nytimes.com/www.nytimes.com/books/97/

03/23/lifetimes/asi-v-fair.html?wptouch_preview_theme=enabled.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review
and New Perspectives.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.8 (Aug. 2013), pp. 1798–1828. doi: 10.1109/tpami.

2013.50.

[Bea+16] Charles Beattie et al. “Deepmind lab.” In: arXiv preprint arXiv:1612.03801
(2016).

[Bel57] Richard Bellman. “A Markovian decision process.” In: Journal of mathematics
and mechanics (1957), pp. 679–684.

[Ber+19] Christopher Berner et al. “Dota 2 with large scale deep reinforcement learning.”
In: arXiv preprint arXiv:1912.06680 (2019).

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:
0387310738.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normaliza-
tion.” In: arXiv preprint arXiv:1607.06450 (2016).

[BKM17] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference:
A Review for Statisticians.” In: Journal of the American Statistical Association
112.518 (Apr. 2017), pp. 859–877. doi: 10.1080/01621459.2017.1285773.

62

https://proceedings.neurips.cc/paper/2018/file/a0afdf1ac166b8652ffe9dee6eac779e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a0afdf1ac166b8652ffe9dee6eac779e-Paper.pdf
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/10.1177/0278364919887447
https://archive.nytimes.com/www.nytimes.com/books/97/03/23/lifetimes/asi-v-fair.html?wptouch_preview_theme=enabled
https://archive.nytimes.com/www.nytimes.com/books/97/03/23/lifetimes/asi-v-fair.html?wptouch_preview_theme=enabled
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1080/01621459.2017.1285773

bibliography 63

[Bou+18] Konstantinos Bousmalis et al. “Using simulation and domain adaptation to
improve efficiency of deep robotic grasping.” In: 2018 IEEE international
conference on robotics and automation (ICRA). IEEE. 2018, pp. 4243–4250.

[Bro+16] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[BTN18] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. “Multi-Level
Variational Autoencoder: Learning Disentangled Representations From Grouped
Observations.” In: Proceedings of the AAAI Conference on Artificial Intelli-
gence 32.1 (Apr. 2018). url: https://ojs.aaai.org/index.php/AAAI/article/

view/11867.

[Bur+18] Christopher P Burgess et al. “Understanding disentangling in β-VAE.” In:
arXiv preprint arXiv:1804.03599 (2018).

[Bur+19] Christopher P Burgess et al. “Monet: Unsupervised scene decomposition and
representation.” In: arXiv preprint arXiv:1901.11390 (2019).

[CB21] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.
2016–2021.

[CH15] Mark Cutler and Jonathan P How. “Efficient reinforcement learning for robots
using informative simulated priors.” In: 2015 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2015, pp. 2605–2612.

[Che+19] Yevgen Chebotar et al. “Closing the Sim-to-Real Loop: Adapting Simula-
tion Randomization with Real World Experience.” In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE, May 2019. doi:
10.1109/icra.2019.8793789.

[Chr+16] Paul Christiano et al. “Transfer from simulation to real world through learning
deep inverse dynamics model.” In: arXiv preprint arXiv:1610.03518 (2016).

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 2
ed. Wiley John + Sons, Sept. 2006. 792 pp. isbn: 0471241954. doi: https:

//doi.org/10.1002/047174882X. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/047174882X. url: https://onlinelibrary.wiley.com/doi/

abs/10.1002/047174882X.

[Dha+17] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/

baselines. 2017.

[Dit+20] Andrea Dittadi et al. “On the Transfer of Disentangled Representations in
Realistic Settings.” In: International Conference on Learning Representations.
2020.

[DMH19] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. “Challenges of
real-world reinforcement learning.” In: arXiv preprint arXiv:1904.12901 (2019).

[EW18] Cian Eastwood and Christopher KI Williams. “A framework for the quantita-
tive evaluation of disentangled representations.” In: International Conference
on Learning Representations. 2018.

arXiv:1606.01540
https://ojs.aaai.org/index.php/AAAI/article/view/11867
https://ojs.aaai.org/index.php/AAAI/article/view/11867
http://pybullet.org
https://doi.org/10.1109/icra.2019.8793789
https://doi.org/https://doi.org/10.1002/047174882X
https://doi.org/https://doi.org/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X
https://onlinelibrary.wiley.com/doi/abs/10.1002/047174882X
https://github.com/openai/baselines
https://github.com/openai/baselines

bibliography 64

[Fin+17] Chelsea Finn et al. “One-Shot Visual Imitation Learning via Meta-Learning.”
In: CoRL. 2017.

[FL17] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot
motion.” In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2017, pp. 2786–2793.

[FLA16] Justin Fu, Sergey Levine, and Pieter Abbeel. “One-shot learning of manipula-
tion skills with online dynamics adaptation and neural network priors.” In:
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2016, pp. 4019–4026.

[Fra+18] Vincent François-Lavet et al. “An Introduction to Deep Reinforcement Learn-
ing.” In: Foundations and Trends® in Machine Learning 11.3-4 (2018), pp. 219–
354. doi: 10.1561/2200000071.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[GG14] Samuel Gershman and Noah Goodman. “Amortized inference in probabilistic
reasoning.” In: Proceedings of the annual meeting of the cognitive science
society. Vol. 36. 36. 2014.

[Haa+18a] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. Tech.
rep. 2018.

[Haa+18b] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor.” In: International
conference on machine learning. PMLR. 2018, pp. 1861–1870.

[Haf+19] Danijar Hafner et al. “Learning Latent Dynamics for Planning from Pixels.”
In: Proceedings of the 36th International Conference on Machine Learning.
Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, Sept. 2019, pp. 2555–2565. url:
https://proceedings.mlr.press/v97/hafner19a.html.

[Haf+20] Danijar Hafner et al. “Dream to Control: Learning Behaviors by Latent
Imagination.” In: International Conference on Learning Representations. 2020.

[Hes+18] Matteo Hessel et al. “Rainbow: Combining improvements in deep reinforcement
learning.” In: Thirty-second AAAI conference on artificial intelligence. 2018.

[HGS16] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement
Learning with Double Q-Learning.” In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press,
2016, pp. 2094–2100.

[Hig+17a] I. Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework.” In: International Conference on Learning
Representations. 2017.

https://doi.org/10.1561/2200000071
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.mlr.press/v97/hafner19a.html

bibliography 65

[Hig+17b] Irina Higgins et al. “DARLA: Improving Zero-Shot Transfer in Reinforcement
Learning.” In: Proceedings of the 34th International Conference on Machine
Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of
Machine Learning Research. PMLR, June 2017, pp. 1480–1490. url: https:

//proceedings.mlr.press/v70/higgins17a.html.

[Hig+18] Irina Higgins et al. “Towards a definition of disentangled representations.” In:
arXiv preprint arXiv:1812.02230 (2018).

[Hof+18] Judy Hoffman et al. “Cycada: Cycle-consistent adversarial domain adaptation.”
In: International conference on machine learning. PMLR. 2018, pp. 1989–
1998.

[Hos19] Haruo Hosoya. “Group-Based Learning of Disentangled Representations with
Generalizability for Novel Contents.” In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence. IJCAI’19. Macao, China: AAAI
Press, 2019, pp. 2506–2513. isbn: 9780999241141.

[HR21] Yordan Hristov and Subramanian Ramamoorthy. “Learning from Demonstra-
tion with Weakly Supervised Disentanglement.” In: International Conference
on Learning Representations. 2021. url: https://openreview.net/forum?

id=Ldau9eHU-qO.

[HS18] David Ha and Jürgen Schmidhuber. “Recurrent World Models Facilitate
Policy Evolution.” In: Advances in Neural Information Processing Systems
31. https://worldmodels.github.io. Curran Associates, Inc., 2018, pp. 2451–
2463. url: https://papers.nips.cc/paper/7512-recurrent-world-models-

facilitate-policy-evolution.

[Hwa+19] Jemin Hwangbo et al. “Learning agile and dynamic motor skills for legged
robots.” In: Science Robotics 4.26 (Jan. 2019), eaau5872. doi: 10 .1126/

scirobotics.aau5872.

[Jeo+19] Rae Jeong et al. “Self-Supervised Sim-to-Real Adaptation for Visual Robotic
Manipulation.” In: arXiv preprint arXiv:1910.09470 (2019).

[Joh+16] Matthew Johnson et al. “The Malmo Platform for Artificial Intelligence Exper-
imentation.” In: 25th International Joint Conference on Artificial Intelligence
(IJCAI-16). AAAI - Association for the Advancement of Artificial Intelligence,
July 2016. url: https://www.microsoft.com/en-us/research/publication/

malmo-platform-artificial-intelligence-experimentation/.

[Jor+99] Michael I Jordan et al. “An introduction to variational methods for graphical
models.” In: Machine learning 37.2 (1999), pp. 183–233.

[Kal+18] Dmitry Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for
Vision-Based Robotic Manipulation.” In: Proceedings of The 2nd Conference
on Robot Learning. 2018.

[Kok+20] Narine Kokhlikyan et al. Captum: A unified and generic model interpretability
library for PyTorch. 2020. arXiv: 2009.07896 [cs.LG].

https://proceedings.mlr.press/v70/higgins17a.html
https://proceedings.mlr.press/v70/higgins17a.html
https://openreview.net/forum?id=Ldau9eHU-qO
https://openreview.net/forum?id=Ldau9eHU-qO
https://worldmodels.github.io
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://www.microsoft.com/en-us/research/publication/malmo-platform-artificial-intelligence-experimentation/
https://arxiv.org/abs/2009.07896

bibliography 66

[KW+19] Diederik P Kingma, Max Welling, et al. “An Introduction to Variational
Autoencoders.” In: Foundations and Trends® in Machine Learning 12.4 (2019),
pp. 307–392.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.”
In: 2nd International Conference on Learning Representations, (ICLR) 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Yoshua Bengio and Yann LeCun. 2014. url: http://arxiv.org/abs/1312.

6114.

[Lev+16] Sergey Levine et al. “End-to-end training of deep visuomotor policies.” In:
The Journal of Machine Learning Research 17.1 (2016), pp. 1334–1373.

[Lev+18] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection.” In: The International Journal
of Robotics Research 37.4-5 (2018), pp. 421–436.

[Lju91] L. Ljung. “Issues in system identification.” In: IEEE Control Systems Magazine
11.1 (1991), pp. 25–29. doi: 10.1109/37.103346.

[Lju99] Lennart Ljung. “System Identification.” In: Wiley Encyclopedia of Elec-
trical and Electronics Engineering. American Cancer Society, 1999. isbn:
9780471346081. doi: https : / / doi . org / 10 . 1002 / 047134608X . W1046.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.

W1046. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.

W1046.

[Loc+19] Francesco Locatello et al. “Challenging Common Assumptions in the Unsu-
pervised Learning of Disentangled Representations.” In: Proceedings of the
36th International Conference on Machine Learning. Ed. by Kamalika Chaud-
huri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR, Sept. 2019, pp. 4114–4124. url: https://proceedings.mlr.

press/v97/locatello19a.html.

[Loc+20] Francesco Locatello et al. “Weakly-Supervised Disentanglement Without Com-
promises.” In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of
Machine Learning Research. PMLR, 13–18 Jul 2020, pp. 6348–6359. url:
https://proceedings.mlr.press/v119/locatello20a.html.

[Loc20] Francesco Locatello. “Enforcing and Discovering Structure in Machine Learn-
ing.” en. PhD thesis. 2020. doi: 10.3929/ETHZ-B-000474164.

[LSA20] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. “Curl: Contrastive
unsupervised representations for reinforcement learning.” In: International
Conference on Machine Learning. PMLR. 2020, pp. 5639–5650.

[Meh+20] Bhairav Mehta et al. “Active domain randomization.” In: Conference on Robot
Learning. PMLR. 2020, pp. 1162–1176.

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1109/37.103346
https://doi.org/https://doi.org/10.1002/047134608X.W1046
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W1046
https://onlinelibrary.wiley.com/doi/pdf/10.1002/047134608X.W1046
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046
https://proceedings.mlr.press/v97/locatello19a.html
https://proceedings.mlr.press/v97/locatello19a.html
https://proceedings.mlr.press/v119/locatello20a.html
https://doi.org/10.3929/ETHZ-B-000474164

bibliography 67

[Mey+19] Richard Meyes et al. “Ablation studies in artificial neural networks.” In: arXiv
preprint arXiv:1901.08644 (2019).

[Mni+13] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning.” In:
arXiv preprint arXiv:1312.5602 (2013).

[Mni+15] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning.” In: Nature 518.7540 (Feb. 2015), pp. 529–533. doi: 10 .1038/

nature14236.

[Mni+16] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learn-
ing.” In: International conference on machine learning. 2016, pp. 1928–1937.

[Mor+18] Ari S. Morcos et al. “On the importance of single directions for generalization.”
In: International Conference on Learning Representations. 2018. url: https:

//openreview.net/forum?id=r1iuQjxCZ.

[MSM20] Richard Meyes, Moritz Schneider, and Tobias Meisen. “How Do You Act? An
Empirical Study to Understand Behavior of Deep Reinforcement Learning
Agents.” In: arXiv preprint arXiv:2004.03237 (2020).

[Mur+20] Fabio Muratore et al. “Bayesian Domain Randomization for Sim-to-Real
Transfer.” In: arXiv preprint arXiv:2003.02471 (2020).

[Nai+18] Ashvin V Nair et al. “Visual Reinforcement Learning with Imagined Goals.” In:
Advances in Neural Information Processing Systems 31 (2018), pp. 9191–9200.

[PC14] Novi Patricia and Barbara Caputo. “Learning to Learn, from Transfer Learning
to Domain Adaptation: A Unifying Perspective.” In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, June 2014. doi: 10.1109/

cvpr.2014.187.

[Pen+18] X. Peng et al. “Sim-to-Real Transfer of Robotic Control with Dynamics
Randomization.” In: 2018 IEEE International Conference on Robotics and
Automation (ICRA) (2018), pp. 1–8.

[Pin+17] Lerrel Pinto et al. “Robust Adversarial Reinforcement Learning.” In: Proceed-
ings of the 34th International Conference on Machine Learning. Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re-
search. International Convention Centre, Sydney, Australia: PMLR, June 2017,
pp. 2817–2826. url: http://proceedings.mlr.press/v70/pinto17a.html.

[Pin+18] Lerrel Pinto et al. “Asymmetric Actor Critic for Image-Based Robot Learn-
ing.” In: Robotics: Science and Systems XIV. Robotics: Science and Systems
Foundation, June 2018. doi: 10.15607/rss.2018.xiv.008.

[PS08] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with
policy gradients.” In: Neural Networks 21.4 (May 2008), pp. 682–697. doi:
10.1016/j.neunet.2008.02.003.

[RM18] Karl Ridgeway and Michael C Mozer. “Learning deep disentangled embeddings
with the F-statistic loss.” In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems. 2018, pp. 185–194.

https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://openreview.net/forum?id=r1iuQjxCZ
https://openreview.net/forum?id=r1iuQjxCZ
https://doi.org/10.1109/cvpr.2014.187
https://doi.org/10.1109/cvpr.2014.187
http://proceedings.mlr.press/v70/pinto17a.html
https://doi.org/10.15607/rss.2018.xiv.008
https://doi.org/10.1016/j.neunet.2008.02.003

bibliography 68

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
3rd. USA: Prentice Hall Press, 2009. isbn: 0136042597.

[RSC18] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker. “Learning to
simulate.” In: arXiv preprint arXiv:1810.02513 (2018).

[Rus+17] Andrei A Rusu et al. “Sim-to-real robot learning from pixels with progressive
nets.” In: Conference on Robot Learning. PMLR. 2017, pp. 262–270.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[Sel+17] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations From
Deep Networks via Gradient-Based Localization.” In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). Oct. 2017.

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication.” In: Bell System
Technical Journal 27.3 (July 1948), pp. 379–423. doi: 10 .1002/j.1538-

7305.1948.tb01338.x.

[Shu+20] Rui Shu et al. “Weakly Supervised Disentanglement with Guarantees.” In:
International Conference on Learning Representations. 2020. url: https:

//openreview.net/forum?id=HJgSwyBKvr.

[Sil+16] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search.” In: Nature 529.7587 (Jan. 2016), pp. 484–489. doi: 10.1038/

nature16961.

[Sil+17a] David Silver et al. “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm.” In: arXiv preprint arXiv:1712.01815 (2017).

[Sil+17b] David Silver et al. “Mastering the game of Go without human knowledge.” In:
Nature 550.7676 (Oct. 2017), pp. 354–359. doi: 10.1038/nature24270.

[Sla+19] Reda Bahi Slaoui et al. “Robust Visual Domain Randomization for Reinforce-
ment Learning.” In: arXiv preprint arXiv:1910.10537 (2019).

[Sto+21] Adam Stooke et al. “Decoupling representation learning from reinforcement
learning.” In: International Conference on Machine Learning. PMLR. 2021,
pp. 9870–9879.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution
for Deep Networks.” In: Proceedings of the 34th International Conference on
Machine Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org,
2017, pp. 3319–3328.

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.”
In: In Workshop at International Conference on Learning Representations.
Citeseer. 2014.

[Sze10] Csaba Szepesvári. “Algorithms for Reinforcement Learning.” In: Synthesis
Lectures on Artificial Intelligence and Machine Learning 4.1 (Jan. 2010),
pp. 1–103. doi: 10.2200/s00268ed1v01y201005aim009.

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://openreview.net/forum?id=HJgSwyBKvr
https://openreview.net/forum?id=HJgSwyBKvr
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.2200/s00268ed1v01y201005aim009

bibliography 69

[Tan+18] Jie Tan et al. “Sim-to-real: Learning agile locomotion for quadruped robots.”
In: arXiv preprint arXiv:1804.10332 (2018).

[Tas+20] Yuval Tassa et al. dm-control: Software and Tasks for Continuous Control.
2020. arXiv: 2006.12983 [cs.RO].

[Tea19] Deepmind Team AlphaStar. “Alphastar: Mastering the real-time strategy
game starcraft ii.” In: DeepMind blog 24 (2019).

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine
for model-based control.” In: 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, Oct. 2012. doi: 10.1109/iros.2012.

6386109.

[Tob+17] Josh Tobin et al. “Domain randomization for transferring deep neural net-
works from simulation to the real world.” In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Sept. 2017. doi:
10.1109/iros.2017.8202133.

[Tot+20] Peter Toth et al. “Hamiltonian Generative Networks.” In: International Con-
ference on Learning Representations. 2020. url: https://openreview.net/

forum?id=HJenn6VFvB.

[TPB99] Naftali Tishby, Fernando C. Pereira, and William Bialek. “The information
bottleneck method.” In: Proc. of the 37-th Annual Allerton Conference on
Communication, Control and Computing. 1999, pp. 368–377. url: https:

//arxiv.org/abs/physics/0004057.

[Trä+21] Frederik Träuble et al. “Representation Learning for Out-of-distribution
Generalization in Reinforcement Learning.” In: ICML 2021 Workshop on
Unsupervised Reinforcement Learning. 2021.

[Tze+20] Eric Tzeng et al. “Adapting deep visuomotor representations with weak
pairwise constraints.” In: Algorithmic Foundations of Robotics XII. Springer,
2020, pp. 688–703.

[VPV+09] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. “Dimen-
sionality reduction: a comparative.” In: J Mach Learn Res 10.66-71 (2009),
p. 13.

[Wan+16] Ziyu Wang et al. “Dueling Network Architectures for Deep Reinforcement
Learning.” In: Proceedings of The 33rd International Conference on Machine
Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 1995–2003. url: https://proceedings.mlr.

press/v48/wangf16.html.

[Wil92] Ronald J Williams. “Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning.” In: Machine learning 8.3-4 (1992), pp. 229–
256.

https://arxiv.org/abs/2006.12983
https://doi.org/10.1109/iros.2012.6386109
https://doi.org/10.1109/iros.2012.6386109
https://doi.org/10.1109/iros.2017.8202133
https://openreview.net/forum?id=HJenn6VFvB
https://openreview.net/forum?id=HJenn6VFvB
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/physics/0004057
https://proceedings.mlr.press/v48/wangf16.html
https://proceedings.mlr.press/v48/wangf16.html

bibliography 70

[Wul+20] Markus Wulfmeier et al. “Representation matters: Improving perception and
exploration for robotics.” In: arXiv preprint arXiv:2011.01758 (2020).

[Yan+19] John Yang et al. “Towards Governing Agent’s Efficacy: Action-Conditional
β-VAE for Deep Transparent Reinforcement Learning.” In: Proceedings of The
Eleventh Asian Conference on Machine Learning. Ed. by Wee Sun Lee and Taiji
Suzuki. Vol. 101. Proceedings of Machine Learning Research. PMLR, 17–19 Nov
2019, pp. 32–47. url: https://proceedings.mlr.press/v101/yang19a.html.

[Yar+21] Denis Yarats et al. “Improving Sample Efficiency in Model-Free Reinforcement
Learning from Images.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 12. 2021, pp. 10674–10681. url: https://github.com/

denisyarats/pytorch_sac_ae.

[YLT19] Wenhao Yu, C. Karen Liu, and Greg Turk. “Policy Transfer with Strategy
Optimization.” In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
url: https://openreview.net/forum?id=H1g6osRcFQ.

[Zen+19] Andy Zeng et al. “TossingBot: Learning to Throw Arbitrary Objects with
Residual Physics.” In: Robotics: Science and Systems XV. Robotics: Science
and Systems Foundation, June 2019. doi: 10.15607/rss.2019.xv.004.

[Zhu+18] Yuke Zhu et al. “Reinforcement and imitation learning for diverse visuomotor
skills.” In: arXiv preprint arXiv:1802.09564 (2018).

[Zhu+20] Henry Zhu et al. “The Ingredients of Real World Robotic Reinforcement
Learning.” In: International Conference on Learning Representations. 2020.

https://proceedings.mlr.press/v101/yang19a.html
https://github.com/denisyarats/pytorch_sac_ae
https://github.com/denisyarats/pytorch_sac_ae
https://openreview.net/forum?id=H1g6osRcFQ
https://doi.org/10.15607/rss.2019.xv.004

71

appendix 72

A
A P P E N D I X

a.1 latent traversal

(a) SAC-ACCI - γ = 500 (Seed 1010) (b) SAC-ACCI - γ = 500 (Seed 1010)

(c) SAC-ACCI - γ = 100 (Seed 6131)
(d) SAC-ACCI - γ = 100 (Seed 1010)

(e) SAC-DARLA - β = 4 (Seed 5352) (f) SAC-DARLA - β = 4 (Seed 9048)

A.2 pca 73

a.2 pca

(a) SAC-ACCI - γ = 500 (Seed 5352) (b) SAC-ACCI - γ = 500 (Seed 8874)

(c) SAC-ACCI - γ = 100 (Seed 3110) (d) SAC-ACCI - γ = 100 (Seed 8874)

(e) SAC-DARLA - β = 4 (Seed 5352) (f) SAC-DARLA - β = 4 (Seed 6131)

A.3 attribution 74

a.3 attribution

a.3.1 Saliency

(a) SAC-ACCI - γ = 500 (Seed 1010) (b) SAC-ACCI - γ = 500 (Seed 1010)

(c) SAC-ACCI - γ = 100 (Seed 1010) (d) SAC-ACCI - γ = 100 (Seed 6131)

(e) SAC-DARLA - β = 4 (Seed 3110) (f) SAC-DARLA - β = 4 (Seed 5352)

A.3 attribution 75

a.3.2 GradCam

(a) SAC-ACCI - γ = 500 (Seed 1010) (b) SAC-ACCI - γ = 500 (Seed 1010)

(c) SAC-ACCI - γ = 100 (Seed 5352) (d) SAC-ACCI - γ = 100 (Seed 8874)

(e) SAC-DARLA - β = 4 (Seed 5352) (f) SAC-DARLA - β = 4 (Seed 9048)

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________
Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)

Matriculation No. (optional)
Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/
Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)
erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.
Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,
dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than
the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written
and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________
Ort, Datum/City, Date Unterschrift/Signature
 *Nichtzutreffendes bitte streichen

*Please delete as appropriate
Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung
falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei
Jahren oder mit Geldstrafe bestraft.
Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely
testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so
tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158
Abs. 2 und 3 gelten entsprechend.
Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence
(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________
Ort, Datum/City, Date Unterschrift/Signature

345827Schneider, Moritz

Aachen, 05.10.2021

Aachen, 05.10.2021

Interpretable Domain Randomization for Reinforcement Learning with Disentangled Representations

	Interpretable Domain Randomization for Reinforcement Learning with Disentangled Representations
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 Theoretical Background
	2.1 Fundamentals of Information Theory
	2.1.1 Information Bottleneck Method

	2.2 Reinforcement Learning
	2.2.1 Markov Decision Processes
	2.2.2 Value Functions
	2.2.3 Policies
	2.2.4 Q-Learning
	2.2.5 Policy Gradient Methods
	2.2.6 Maximum Entropy Reinforcement Learning

	2.3 Simulation to Reality Transfer (Sim-to-Real)
	2.3.1 Challenges of Real-World Reinforcement Learning
	2.3.2 Domain Adaptation
	2.3.3 Domain Randomization

	2.4 Representation Learning
	2.4.1 Autoencoders
	2.4.2 Variational Autoencoders
	2.4.3 Disentangled Representations

	3 Related Work
	3.1 Vision-Based Reinforcement Learning
	3.2 Vision-Based Robot Learning
	3.3 Sim-to-Real & Domain Randomization
	3.3.1 Domain Randomization

	3.4 Disentangled Representations for Reinforcement Learning

	4 Disentangling Visual Reinforcement Learning with Domain Randomization
	4.1 Problem Formulation
	4.2 Guiding Domain Randomization with Weak-Supervision
	4.3 Capacity-based Domain Randomization
	4.4 Capacity-based Weakly-Supervised Domain Randomization

	5 Experimental Results
	5.1 Experimental Setup
	5.1.1 Environment
	5.1.2 Training Setup & Hyperparameters

	5.2 Source Domain Evaluation
	5.2.1 Encoding Performance

	5.3 Simulation-to-Simulation Experiments
	5.4 Latent State Interpretability
	5.4.1 Latent Traversals
	5.4.2 Embeddings of Encodings
	5.4.3 Attribution

	6 Conclusion & Outlook
	6.1 Future Investigations & Ideas

	 Bibliography
	A Appendix
	A.1 Latent Traversal
	A.2 PCA
	A.3 Attribution
	A.3.1 Saliency
	A.3.2 GradCam

